scholarly journals In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor

2007 ◽  
Vol 176 (4) ◽  
pp. i8-i8
Author(s):  
Alexandre Boissonnas ◽  
Luc Fetler ◽  
Ingrid S. Zeelenberg ◽  
Stéphanie Hugues ◽  
Sebastian Amigorena
2021 ◽  
Vol 83 (1) ◽  
Author(s):  
Christian John Hurry ◽  
Alexander Mozeika ◽  
Alessia Annibale

AbstractDescribing the anti-tumour immune response as a series of cellular kinetic reactions from known immunological mechanisms, we create a mathematical model that shows the CD4$$^{+}$$ + /CD8$$^{+}$$ + T-cell ratio, T-cell infiltration and the expression of MHC-I to be interacting factors in tumour elimination. Methods from dynamical systems theory and non-equilibrium statistical mechanics are used to model the T-cell dependent anti-tumour immune response. Our model predicts a critical level of MHC-I expression which determines whether or not the tumour escapes the immune response. This critical level of MHC-I depends on the helper/cytotoxic T-cell ratio. However, our model also suggests that the immune system is robust against small changes in this ratio. We also find that T-cell infiltration and the specificity of the intra-tumour TCR repertoire will affect the critical MHC-I expression. Our work suggests that the functional form of the time evolution of MHC-I expression may explain the qualitative behaviour of tumour growth seen in patients.


Author(s):  
Julia Femel ◽  
Luuk van Hooren ◽  
Melanie Herre ◽  
Jessica Cedervall ◽  
Falk Saupe ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Anna Buxeda ◽  
Laura Llinàs ◽  
Javier Gimeno ◽  
Carlos Arias Cabrales ◽  
Carla Burballa Tarrega ◽  
...  

Abstract Background and Aims Antibody-mediated rejection (ABMR) associated with donor-specific HLA antibodies (DSA) is the leading cause of late allograft failure after kidney transplantation. Microvascular inflammation (MVI) without detectable circulating DSA or C4d + cannot be classified as ABMR according to Banff-2017. The involvement of intragraft lymphocyte subsets in the development of humoral damage in kidney transplantation (KT) is relevant. We aimed to analyze lymphocyte subset distribution in kidney transplant biopsies (KTBx) with ABMR compared with MVI and with normal KTBx. Method KTBx with ABMR, MVI (g+ptc≥2, without DSA) or normal findings were included. DSA were identified with Luminex single antigen assays. Intragraft lymphocyte subsets’ characterization was performed by immunohistochemistry: T-lymphocytes (CD3, CD4, CD8, Foxp3), B-lymphocytes / plasmatic cells (CD20, CD138), NK cells (CD56), macrophages / monocytes (CD68), cytotoxic cells (TIA1) and activated cells (PD1) were evaluated. Results We analyzed 34 KTBx: 21 ABMR, 5 MVI and 8 KTBx with normal findings. KT with ABMR and MVI had more proteinuria at the time of the biopsy compared with the normal group (575 mg/24h and 964 mg/24h vs 147 mg/24h, p=0.002 and p=0.005 respectively). DSA were more frequently detected in patients with ABMR (95.2% vs 0% and 37.5%, p<0.001 and p=0.003 respectively). KTBx with ABMR and MVI had increased cytotoxic T-cell infiltration apparently corresponding to NK cells in peritubular capillaries (ptc) compared to normal group. Moreover, both groups showed a greater number of macrophages and monocytes in glomeruli. KT with MVI but not with ABMR had a significantly increased activated cell infiltration (PD1+) in ptc compared to the normal group, and showed an increased cytotoxic T-cell infiltration in glomeruli compared to ABMR and normal groups. Conclusion ABMR and MVI have an increased infiltration of NK cells with cytotoxic activity in ptc that differs from the normal group. However, KT with MVI show greater infiltration of activated cells in ptc and cytotoxic T-cell in glomeruli compared to ABMR suggesting the possibility of different activation pathways.


2020 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Garry L. Coles ◽  
Savreet K. Sandhu ◽  
David S. Johnson ◽  
Adam S. Adler ◽  
...  

AbstractBackgroundThe anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated.ResultsFor the first time, we used single-cell RNA sequencing to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in CD45+ cells, and down-regulation of extracellular matrix genes in CD45-cells. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1.ConclusionsTaken together, our data could be leveraged translationally to improve anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Johansson-Percival ◽  
Ruth Ganss

Improving the effectiveness of anti-cancer immunotherapy remains a major clinical challenge. Cytotoxic T cell infiltration is crucial for immune-mediated tumor rejection, however, the suppressive tumor microenvironment impedes their recruitment, activation, maturation and function. Nevertheless, solid tumors can harbor specialized lymph node vasculature and immune cell clusters that are organized into tertiary lymphoid structures (TLS). These TLS support naïve T cell infiltration and intratumoral priming. In many human cancers, their presence is a positive prognostic factor, and importantly, predictive for responsiveness to immune checkpoint blockade. Thus, therapeutic induction of TLS is an attractive concept to boost anti-cancer immunotherapy. However, our understanding of how cancer-associated TLS could be initiated is rudimentary. Exciting new reagents which induce TLS in preclinical cancer models provide mechanistic insights into the exquisite stromal orchestration of TLS formation, a process often associated with a more functional or “normalized” tumor vasculature and fueled by LIGHT/LTα/LTβ, TNFα and CC/CXC chemokine signaling. These emerging insights provide innovative opportunities to induce and shape TLS in the tumor microenvironment to improve immunotherapies.


Cell Reports ◽  
2019 ◽  
Vol 29 (8) ◽  
pp. 2338-2354.e7 ◽  
Author(s):  
Hye-Jung E. Chun ◽  
Pascal D. Johann ◽  
Katy Milne ◽  
Marc Zapatka ◽  
Annette Buellesbach ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14532-e14532
Author(s):  
Joerg Wischhusen ◽  
Markus Haake ◽  
Neha Vashist ◽  
Sabrina Genßler ◽  
Kilian Wistuba-Hamprecht ◽  
...  

e14532 Background: Growth and differentiation factor 15 (GDF-15) is a divergent member of the TGF-β superfamily with low to absent expression in healthy tissue. GDF-15 has been linked to feto-maternal immune tolerance, to prevention of excessive immune cell infiltration during tissue damage, and to anorexia. Various major tumor types secrete high levels of GDF-15. In cancer patients, elevated GDF-15 serum levels correlate with poor prognosis and reduced overall survival (OS). Methods: Impact of a proprietary GDF-15 neutralizing antibody (CTL-002) regarding T cell trafficking was analyzed by whole blood adhesion assays, a HV18-MK melanoma-bearing humanized mouse model and a GDF-15-transgenic MC38 model. Additionally, patient GDF-15 serum levels were correlated with clinical response and overall survival in oropharyngeal squamous cell carcinoma (OPSCC) and melanoma brain metastases. Results: In whole blood cell adhesion assays GDF-15 impairs adhesion of T and NK cells to activated endothelial cells. Neutralization of GDF-15 by CTL-002 rescued T cell adhesion. In HV18-MK-bearing humanized mice CTL-002 induced a strong increase in TIL numbers. Subset analysis revealed an overproportional enrichment of T cells, in particular CD8+ T cells. As immune cell exclusion is detrimental for checkpoint inhibitor (CPI) therapy, a GDF-15-transgenic MC38 model was tested for anti-PD-1 therapy efficacy. In GDF-15 overexpressing MC38 tumors response to anti PD-1 therapy was reduced by 90% compared to wtMC38 tumors. Combining aPD-1 with CTL-002 resulted in 50% of the mice rejecting their GDF-15 overexpressing tumors. Clinically, inverse correlations of GDF-15 levels with CD8+ T cell infiltration were shown for HPV+ OPSCC and for melanoma brain metastases. GDF-15 serum levels were significantly higher in HPV- than in HPV+ OPSCC patient (p < 0.0001). Low GDF-15 levels corresponded to longer OS in both HPV- and HPV+ OPSCC. In two independent melanoma patient cohorts treated with nivolumab or pembrolizumab low baseline serum GDF-15 levels were predictive for clinical response to anti-PD1 treatment and superior OS. Bivariate analysis including LDH indicates that GDF-15 independently predicts poor survival in aPD-1 treated melanoma patients. Conclusions: Taken together our in vitro and in vivo data show that elevated GDF-15 levels block T-cell infiltration into tumor tissues. Neutralizing GDF-15 with CTL-002 restores the ability of T cells to extravasate blood vessels and enter tumor tissue both in vitro and in vivo. In melanoma, patients with higher GDF-15 levels have significantly shorter survival and are less likely to respond to anti-PD1 therapy. GDF-15 may thus serve as a new predictive biomarker for anti-PD1 response, but most importantly also represents a novel target for cancer immunotherapy to improve tumor immune cell infiltration and response to anti-PD1 therapy.


Sign in / Sign up

Export Citation Format

Share Document