scholarly journals STUDIES OF DELAYED HYPERSENSITIVITY IN VITRO

1957 ◽  
Vol 106 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Lowell A. Glasgow ◽  
Herbert R. Morgan

Guinea pigs experimentally infected with mumps virus develop a delayed, hypersensitive skin reaction following the intradermal injection of heat-inactivated mumps virus. This in vivo hypersensitivity is accompanied by a state of cellular hypersensitivity which can be demonstrated in vitro by the addition of mumps viral antigen to cultures of splenic macrophages, following which they become less motile and undergo lysis. These observations support the hypothesis that the state of hypersensitivity which develops early in mumps virus infections may have a role in the pathogenesis of the disease.

1958 ◽  
Vol 107 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Robert A. Patnode ◽  
Paul C. Hudgins

The administration of triton WR-1339 (300 mg./kg. subcutaneously) to tuberculin-sensitive guinea pigs 2 hours before the intradermal injection of PPD depresses slightly their skin sensitivity to tuberculin and essentially obliterates the lytic effect of tuberculin on their circulating leucocytes. When leucocytes from tuberculin-sensitive guinea pigs are exposed to triton in vitro at a concentration level attainable in vivo the cells are partially protected against lysis by PPD.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


Pathology ◽  
1983 ◽  
Vol 15 (4) ◽  
pp. 369-372 ◽  
Author(s):  
Christine Johnson ◽  
R.S. Walls ◽  
A. Ruwoldt

1963 ◽  
Vol 61 (3) ◽  
pp. 353-363 ◽  
Author(s):  
A. L. Olitzki ◽  
Dina Godinger

1. Salmonella typhi, strain Ty2, grown in vivo and employed as acetone-dried vaccine possessed a higher immunizing potency than the descendants of the same parent strain grown in vitro and employed as vaccine.2. When 2 × 108in vitro-grown bacteria were employed as challenge, the immunizing effects of both types of vaccine were more marked than after administration of 2 × 108in vivo-grown bacteria as challenge.3. The higher potency of the in vivo-grown vaccine was apparent in all experiments, whether the challenge strain was grown in vivo or in vitro.4. Immunogenic substances were isolated from infected organs of mice and guinea-pigs, and an immunogenic substance from the peritoneal fluid of the infected guinea-pigs was concentrated by precipitation with ethanol.


1946 ◽  
Vol 84 (4) ◽  
pp. 277-292 ◽  
Author(s):  
S. Edward Sulkin ◽  
Christine Zarafonetis ◽  
Andres Goth

Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell.


2007 ◽  
Vol 292 (4) ◽  
pp. L915-L923 ◽  
Author(s):  
Jaime Chávez ◽  
Patricia Segura ◽  
Mario H. Vargas ◽  
José Luis Arreola ◽  
Edgar Flores-Soto ◽  
...  

Organophosphates induce bronchoobstruction in guinea pigs, and salbutamol only transiently reverses this effect, suggesting that it triggers additional obstructive mechanisms. To further explore this phenomenon, in vivo (barometric plethysmography) and in vitro (organ baths, including ACh and substance P concentration measurement by HPLC and immunoassay, respectively; intracellular Ca2+ measurement in single myocytes) experiments were performed. In in vivo experiments, parathion caused a progressive bronchoobstruction until a plateau was reached. Administration of salbutamol during this plateau decreased bronchoobstruction up to 22% in the first 5 min, but thereafter airway obstruction rose again as to reach the same intensity as before salbutamol. Aminophylline caused a sustained decrement (71%) of the parathion-induced bronchoobstruction. In in vitro studies, paraoxon produced a sustained contraction of tracheal rings, which was fully blocked by atropine but not by TTX, ω-conotoxin (CTX), or epithelium removal. During the paraoxon-induced contraction, salbutamol caused a temporary relaxation of ∼50%, followed by a partial recontraction. This paradoxical recontraction was avoided by the M2- or neurokinin-1 (NK1)-receptor antagonists (methoctramine or AF-DX 116, and L-732138, respectively), accompanied by a long-lasting relaxation. Forskolin caused full relaxation of the paraoxon response. Substance P and, to a lesser extent, ACh released from tracheal rings during 60-min incubation with paraoxon or physostigmine, respectively, were significantly increased when salbutamol was administered in the second half of this period. In myocytes, paraoxon did not produce any change in the intracellular Ca2+ basal levels. Our results suggested that: 1) organophosphates caused smooth muscle contraction by accumulation of ACh released through a TTX- and CTX-resistant mechanism; 2) during such contraction, salbutamol relaxation is functionally antagonized by the stimulation of M2 receptors; and 3) after this transient salbutamol-induced relaxation, a paradoxical contraction ensues due to the subsequent release of substance P.


Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


1957 ◽  
Vol 105 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jonathan W. Uhr ◽  
A. M. Pappenheimer ◽  
M. Yoneda

Guinea pigs infected by intradermal injection of living toxigenic diphtheria bacilli and protected by horse antitoxic globulin, given either before or after infection, develop delayed hypersensitivity of the tuberculin type to diphtherial proteins. The highest degree of hypersensitivity is specifically directed against diphtheria toxin (or toxoid) itself, although smaller delayed skin reactions may be evoked in sensitized animals by other diphtherial proteins common to both toxigenic and non-toxigenic strains. Animals sensitized to diphtheria toxin by infection with a toxigenic strain in this way react positively to the Schick test and their serum usually contains no detectable antitoxin 2 to 3 weeks after the initial infection. Animals infected with living non-toxigenic diphtheria bacilli become sensitized to proteins common to both toxigenic and non-toxigenic strains but do not show sensitivity to toxin. The observations suggest that a minute amount of toxoid, or of toxin comparable to that which might be liberated during infection, might induce the hypersensitive state if injected in the form of a complex with excess antitoxin. This prediction is verified by the results reported in the following paper (23).


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245922
Author(s):  
Faye Lanni ◽  
Neil Burton ◽  
Debbie Harris ◽  
Susan Fotheringham ◽  
Simon Clark ◽  
...  

Optimised pre-clinical models are required for TB drug development to better predict the pharmacokinetics of anti-tuberculosis (anti-TB) drugs to shorten the time taken for novel drugs and combinations to be approved for clinical trial. Microdialysis can be used to measure unbound drug concentrations in awake freely moving animals in order to describe the pharmacokinetics of drugs in the organs as a continuous sampling technique. The aim of this work was to develop and optimise the microdialysis methodology in guinea pigs to better understand the pharmacokinetics of rifampicin in the lung. In vitro experiments were performed before progressing into in vivo studies because the recovery (concentration of the drug in the tissue fluid related to that in the collected dialysate) of rifampicin was dependent on a variety of experimental conditions. Mass spectrometry of the dialysate was used to determine the impact of flow rate, perfusion fluid and the molecular weight cut-off and membrane length of probes on the recovery of rifampicin at physiologically relevant concentrations. Following determination of probe efficiency and identification of a correlation between rifampicin concentrations in the lung and skeletal muscle, experiments were conducted to measure rifampicin in the sacrospinalis of guinea pigs using microdialysis. Lung concentrations of rifampicin were estimated from the rifampicin concentrations measured in the sacrospinalis. These studies suggest the potential usefulness of the microdialysis methodology to determine drug concentrations of selected anti-TB drugs to support new TB drug development.


1980 ◽  
Vol 29 (2) ◽  
pp. 408-410
Author(s):  
R T Cursons ◽  
T J Brown ◽  
E A Keys ◽  
K M Moriarty ◽  
D Till

The role of cell-mediated immunity in defense against pathogenic free-living amoebae was examined. Both the in vitro macrophage inhibition test and the in vivo delayed hypersensitivity test showed responses to both heterologous and homologous antigens, although homologous systems were the most efficient. It is suggested that exposure to nonpathogenic species of free-living amoebae can stimulate the immune system to be effective against pathogenic species. The significance of cell-mediated immunity as a defense against invasion by pathogenic free-living amoebae is discussed.


Sign in / Sign up

Export Citation Format

Share Document