scholarly journals THE EFFECT OF RHEUMATOID FACTORS AND OF ANTIGLOBULINS ON IMMUNE HEMOLYSIS IN VIVO

1963 ◽  
Vol 117 (1) ◽  
pp. 105-125 ◽  
Author(s):  
Manuel E. Kaplan ◽  
James H. Jandl

Studies were undertaken in man and in the rat comparing the effects of rheumatoid factors and immune antiglobulins on red cells sensitized with incomplete antibodies. The interaction of immune antiglobulins with sensitized red cells produced (a) agglutination in vitro and (b) an accelerated sequestration of the sensitized cells in vivo. In contrast, rheumatoid macroglobulins, although capable of agglutinating Rh-sensitized red cells in vitro, did not modify their destruction in vivo. The failure of rheumatoid factors to function as antiglobulins in vivo appears to reflect their non-reactivity with sensitized cells in whole serum. It is suggested: (a) that the native (7S) gamma globulins of plasma competitively inhibit rheumatoid factors from reacting with fixed antibody in the blood stream; (b) that if these macroglobulins do indeed have pathogenetic activity, this may be limited to body fluids of low protein content.

1964 ◽  
Vol 47 (3_Suppl) ◽  
pp. S28-S36
Author(s):  
Kailash N. Agarwal
Keyword(s):  

ABSTRACT Red cells were incubated in vitro with sulfhydryl inhibitors and Rhantibody with and without prior incubation with prednisolone-hemisuccinate. These erythrocytes were labelled with Cr51 and P32 and their disappearance in vivo after autotransfusion was measured. Prior incubation with prednisolone-hemisuccinate had no effect on the rate of red cell disappearance. The disappearance of the cells was shown to take place without appreciable intravascular destruction.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mira Puthettu ◽  
Stijn Vandenberghe ◽  
Stefanos Demertzis

Abstract Background During cardiac surgery, micro-air emboli regularly enter the blood stream and can cause cognitive impairment or stroke. It is not clearly understood whether the most threatening air emboli are generated by the heart-lung machine (HLM) or by the blood-air contact when opening the heart. We performed an in vitro study to assess, for the two sources, air emboli distribution in the arterial tree, especially in the brain region, during cardiac surgery with different cannulation sites. Methods A model of the arterial tree was 3D printed and included in a hydraulic circuit, divided such that flow going to the brain was separated from the rest of the circuit. Air micro-emboli were injected either in the HLM (“ECC Bubbles”) or in the mock left ventricle (“Heart Bubbles”) to simulate the two sources. Emboli distribution was measured with an ultrasonic bubble counter. Five repetitions were performed for each combination of injection site and cannulation site, where air bubble counts and volumes were recorded. Air bubbles were separated in three categories based on size. Results For both injection sites, it was possible to identify statistically significant differences between cannulation sites. For ECC Bubbles, axillary cannulation led to a higher amount of air bubbles in the brain with medium-sized bubbles. For Heart Bubbles, aortic cannulation showed a significantly bigger embolic load in the brain with large bubbles. Conclusions These preliminary in vitro findings showed that air embolic load in the brain may be dependent on the cannulation site, which deserves further in vivo exploration.


Talanta ◽  
1983 ◽  
Vol 30 (2) ◽  
pp. 121-123 ◽  
Author(s):  
J. Wang ◽  
L.D. Hutchins ◽  
S. Selim ◽  
L.B. Cumming

Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1389-1393
Author(s):  
E Beutler ◽  
L Forman ◽  
C West

The addition of oxalate to blood stored in Citrate-phosphate-dextrose (CPD) produces a marked improvement in 2,3-diphosphoglycerate (2,3-DPG) preservation; an increase in 2,3-DPG levels can also be documented in short-term incubation studies. Oxalate is a potent in vitro inhibitor of red cell lactate dehydrogenase, monophosphoglycerate mutase, and pyruvate kinase (PK). In the presence of fructose 1,6-diphosphate the latter inhibitory effect is competitive with phospho(enol)pyruvate (PEP). Determination of the levels of intermediate compounds in red cells incubated with oxalate suggest the presence of inhibition at the PK step, indicating that this is the site of oxalate action. Apparent inhibition at the glyceraldehyde phosphate dehydrogenase step is apparently due to an increase in the NADH/NAD ratio. Oxalate had no effect on the in vivo viability of rabbit red cells stored in CPD preservatives for 21 days. Greater understanding of the toxicity of oxalate is required before it can be considered suitable as a component of preservative media, but appreciation of the mechanism by which it affects 2,3-DPG levels may be important in design of other blood additives. Malonate, the 3-carbon dicarboxylic acid analogue of oxalate late did not inhibit pyruvate kinase nor affect 2,3-DPG levels.


Author(s):  
Libuše Janská ◽  
Libi Anandi ◽  
Nell C. Kirchberger ◽  
Zoran S. Marinkovic ◽  
Logan T. Schachtner ◽  
...  

There is an urgent need for accurate, scalable, and cost-efficient experimental systems to model the complexity of the tumor microenvironment. Here, we detail how to fabricate and use the Metabolic Microenvironment Chamber (MEMIC) – a 3D-printed ex vivo model of intratumoral heterogeneity. A major driver of the cellular and molecular diversity in tumors is the accessibility to the blood stream that provides key resources such as oxygen and nutrients. While some tumor cells have direct access to these resources, many others must survive under progressively more ischemic environments as they reside further from the vasculature. The MEMIC is designed to simulate the differential access to nutrients and allows co-culturing different cell types, such as tumor and immune cells. This system is optimized for live imaging and other microscopy-based approaches, and it is a powerful tool to study tumor features such as the effect of nutrient scarcity on tumor-stroma interactions. Due to its adaptable design and full experimental control, the MEMIC provide insights into the tumor microenvironment that would be difficult to obtain via other methods. As a proof of principle, we show that cells sense gradual changes in metabolite concentration resulting in multicellular spatial patterns of signal activation and cell proliferation. To illustrate the ease of studying cell-cell interactions in the MEMIC, we show that ischemic macrophages reduce epithelial features in neighboring tumor cells. We propose the MEMIC as a complement to standard in vitro and in vivo experiments, diversifying the tools available to accurately model, perturb, and monitor the tumor microenvironment, as well as to understand how extracellular metabolites affect other processes such as wound healing and stem cell differentiation.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1427-1431 ◽  
Author(s):  
N Fortier ◽  
LM Snyder ◽  
F Garver ◽  
C Kiefer ◽  
J McKenney ◽  
...  

Abstract In vitro induced oxidative damage to normal human RBCs has previously been shown to result in increased membrane rigidity as a consequence of the generation of a protein complex between hemoglobin and spectrin. In order to determine if in vivo generated hemoglobin-spectrin complexes may play a role in increased membrane rigidity of certain pathologic red cells, we measured both these parameters in membranes prepared from hereditary xerocytosis (Hx), sickle cell disease (Sc), and red cells from thalassemia minor (beta thal). Membranes were prepared from density-fractionated red cells, and membrane deformability was measured using an ektacytometer. Hemoglobin-spectrin complex was determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel analysis, as well as by Western blot analysis using a monoclonal antibody against the beta- subunit of hemoglobin. For these three types of pathologic red cells, progressive cellular dehydration was associated with increased membrane rigidity and increased content of hemoglobin-spectrin complex. Moreover, the increase in membrane rigidity appeared to be directly related to the quantity of hemoglobin-spectrin complex associated with the membrane. Our findings imply that hemoglobin-spectrin complex is generated in vivo, and this in turn results in increased membrane rigidity of certain pathologic red cells. The data further suggest that oxidative crosslinking may play an important role in the pathophysiology of certain red cell disorders.


1964 ◽  
Vol 207 (6) ◽  
pp. 1215-1220 ◽  
Author(s):  
Alisa Gutman ◽  
Eleazar Shafrir

Rat adipose tissue from different body sites was shown to contain uridine diphosphoglucose (UDPG)-transglucosylase activity, which on the basis of protein content was comparable to or higher than that reported for muscle or liver. In epididymal adipose tissue, the activity of UDPG-glycogen transglucosylase and phosphorylase, as well as the content of glycogen per wet weight, decreased with increasing age of the animals in parallel with the decrease of tissue protein content. On prolonged fast the activity of UDPG-glycogen transglucosylase and phosphorylase per milligram protein dropped by 25–50% of the control value. On refeeding, the extent of changes was variable but, in general, at 24 hr control or higher levels of activity were reached and at 48 hr the activities were elevated. The ratio of glucose 6-phosphate independent activity of UDPG-glycogen transglucosylase to total activity was not affected by fasting and refeeding or by the administration of glucose with insulin. In adrenalectomized rats, with high adipose tissue glycogen, no change in UDPG-glycogen transglucosylase was found, whereas the levels of phosphorylase were elevated. Epinephrine in vivo and in vitro did not affect the activity of UDPG-glycogen transglucosylase of adipose tissue.


2019 ◽  
Vol 71 (5) ◽  
pp. 989-1002
Author(s):  
M. P. Krzykawski ◽  
R. Krzykawska ◽  
M. Paw ◽  
J. Czyz ◽  
J. Marcinkiewicz

Abstract Cancer metastasis is believed to happen through active intravasation but there might be also another way to metastasize. According to passive shedding hypothesis, proposed by Munn et al., tumor cells detach from the tumor mass and passively shed to blood stream through leaky blood vessels. We propose a novel In Vitro Migrational Selection (IVMS) assay that enables the pre-selection of invasive pancreatic cancer Panc-02 cells and create a model of passive shedding. We established invasive sub-cell line of murine pancreatic cancer Panc-02 cells (refered to as Panc02-RS), which exhibited higher metastatic potential in vivo and at the same time decrease in vitro migratory skills, comparing to the initial Panc-02 cell line. In in vitro cell cultures Panc-02 spontaneously detached from the cell culture surface and later reattached and colonized new areas. We believe it can mimic the new way of metastasis, namely passive shedding. We concentrated on Panc-02 model but believe that IVMS might be used to create sub cell lines of many solid tumors to model passive shedding. Our results support the passive shedding hypothesis.


1977 ◽  
Vol 32 (5-6) ◽  
pp. 405-408 ◽  
Author(s):  
O. Schmut ◽  
H. Katschnig ◽  
M. Zirm

Abstract Fluids of the human body with low protein content, i.e. aqueous humour, tears, cerebrospinal fluid, and urine were analyzed by a combination of micro-disc-electrophoresis and electroimmuno-diffusion. By this method both qualitative and quantitative statements about the proteins of these fluids can be established.


Blood ◽  
1972 ◽  
Vol 40 (5) ◽  
pp. 733-739 ◽  
Author(s):  
Blanche P. Alter ◽  
Yuet Wai Kan ◽  
David G. Nathan

Abstract Cyanate prevents sickling in vitro and apparently prolongs the survival of 51Cr-tagged sickle erythrocytes in vivo. Cautious interpretation is required because the effects of cyanate on 51Cr binding to sickle and fetal hemoglobin-containing red cells are unknown, and comparison of the effect of cyanate on sickle red cell survival to control red cell survival must be performed sequentially. We have studied the survival of sickle reticulocytes utilizing radioactive amino acids that are incorporated into hemoglobin. Two informed adult patients with sickle cell disease were studied. In each study, two 50-ml samples of blood were incubated separately with 14C- and 3H-leucine for 2 hr, after which 50 mM cyanate was added to one aliquot for 1 hr. The cells were then washed and reinfused. Frequent venous samples were obtained, and the specific activities of 14C and 3H in the hemoglobin were followed. The t ½ of the carbamylated cells was tripled, but remained below normal. This method provides a generally useful measurement of the influence of drugs bound to red cells on reticulocyte lifespan. The labels are incorporated into the hemoglobin molecule of the reticulocyte, and simultaneous comparison of the survivals of the same cohort of drug-treated and control cells is achieved.


Sign in / Sign up

Export Citation Format

Share Document