scholarly journals THE DISTRIBUTION OF LARGE DIVIDING LYMPH NODE CELLS IN SYNGENEIC RECIPIENT RATS AFTER INTRAVENOUS INJECTION

1969 ◽  
Vol 130 (6) ◽  
pp. 1427-1451 ◽  
Author(s):  
Claude Griscelli ◽  
Pierre Vassalli ◽  
Robert T. McCluskey

The distribution of large dividing lymph node or thoracic duct lymph cells, labeled in vitro with 3H-thymidine, was studied in syngeneic recipient rats after intravenous injection. In most experiments the donor rats had been immunized with Bacillus pertussis 4 days earlier, but in some instances cells from nonimmunized donors were used. In smears, the labeled donor cells had the appearance of large lymphocytes or large pyroninophilic cells. By electronmicroscopy, the majority of labeled donor cells were seen to have only scanty endoplasmic reticulum. It was found that the labeled cells rapidly "homed" to lymphoid tissue and recirculated in the recipient, in a fashion resembling that of small lymphocytes. However, the distribution of labeled cells was found to depend upon the source of the donor cells. Cells from mesenteric lymph nodes or thoracic duct lymph showed a marked preferential accumulation in lymphoid tissue within or adjacent to the intestine, whereas cells from peripheral nodes accumulated preferentially in peripheral lymph nodes. Cells from any of these sources showed an equal tendency to accumulate in the white pulp of the spleen. Suspensions of small lymphocytes, labeled in vitro with 3H-uridine, did not display a similar tendency to localize preferentially in lymphoid tissue in certain regions. It was also found that large dividing lymph node cells from donors immunized with an antigen (2,4-dinitrophenyl-bovine gamma globulin (DNP-BGG) or B. pertussis) showed a greater tendency to accumulate in a recipient lymph node containing that antigen than in the contralateral node. It was not determined whether the selective accumulation of large dividing lymphoid cells from different sources in lymphoid tissue of different regions in recipients was due to an antigen recognition mechansim or was the result of two different populations of cells with different "homing" mechanisms.

1964 ◽  
Vol 47 (4) ◽  
pp. 438-445 ◽  
Author(s):  
James V. Maloney ◽  
Robert Franks ◽  
Dwight Makoff ◽  
Paul H. Sherman

1972 ◽  
Vol 135 (2) ◽  
pp. 200-219 ◽  
Author(s):  
Jonathan C. Howard ◽  
S. V. Hunt ◽  
J. L. Gowans

These experiments show that small lymphocytes from the thoracic duct of rats are normally a mixture of thymus-derived and marrow-derived cells, and define the traffic areas in lymphoid tissues through which the two populations recirculate. Thoracic duct lymphocytes were labeled in vitro with uridine-3H and their histological distribution in the lymphoid tissues of normal recipients was demonstrated by radioautography. Labeled lymphocytes occupied two adjacent areas distinguished by a marked difference in the intensity of labeling; heavily labeled cells were found in thymus-dependent traffic areas of lymphocyte recirculation, while lightly labeled cells localized in the thymus-independent follicular areas around germinal centers. A corresponding heterogeneity of uridine uptake among small lymphocytes from normal donors was demonstrated by sedimentation at 1 g; slowly sedimenting cells incorporated little uridine and localized in follicular areas after transfusion while rapidly sedimenting cells incorporated more uridine and localized in thymus-dependent areas after transfusion. Experimentally prepared marrow-derived small lymphocytes behaved in sedimentation studies and after transfusion like a pure population of the lightly labeled small lymphocytes in normal lymph. Artificially reconstituted mixtures of marrow-derived and thymus-derived lymphocytes were qualitatively indistinguishable from normal lymphocyte populations.


1968 ◽  
Vol 127 (1) ◽  
pp. 155-168 ◽  
Author(s):  
Irving Goldschneider ◽  
Douglas D. McGregor

The cellular deficit in rats thymectomized at birth is primarily one of circulating small lymphocytes. The lymphocyte deficiency is similar to that induced in adult rats by chronic drainage from a thoracic duct fistula. In both cases, the animals show a reduction of small lymphocytes in peripheral blood, thoracic duct lymph, and in circumscribed areas of lymphoid tissue. The lympocyte deficiency in lymphoid tissue can be corrected by an intravenous injection of thoracic duct lymphocytes. The evidence suggests that the deficiency is corrected by small lymphocytes. Small lymphocytes pass from blood to lymphoid tissue along a route which includes the marginal sinus in splenic white pulp and postcapillary venules in the cortex of lymph nodes and Peyer's patches. Neither the ability of small lymphocytes to colonize lymphoid tissue nor their ability to traverse postcapillary venules are thymus-dependent phenomena. However, movement of small lymphocytes across postcapillary venules appears to modify the structure of endothelium. Intravenously injected small thymocytes migrate to lymphoid tissue in smaller numbers than small lymphocytes inoculated by the same route. The few thymocytes which localize in lymphoid tissue follow the same pathway as circulating small lymphocytes.


2008 ◽  
Vol 11 (4) ◽  
pp. 149 ◽  
Author(s):  
Artur Schander ◽  
Melissa K. Bearden ◽  
Jamie B. Huff ◽  
Arthur Williams ◽  
Scott T. Stoll ◽  
...  

1985 ◽  
Vol 161 (6) ◽  
pp. 1581-1586 ◽  
Author(s):  
Y Ron ◽  
J Sprent

Despite earlier evidence to the contrary, it has recently been claimed that most B lymphocytes, including lymph node (LN) and thoracic duct B cells, are short-lived cells of recent marrow origin. To seek direct information on this question, we transferred unprimed LN or thoracic duct B cells from normal mice to xid mice, i.e., mice unresponsive to the T-independent antigen, trinitrophenyl (TNP)-Ficoll. At varying periods after B cell transfer the recipients were challenged with TNP-Ficoll; anti-TNP plaque-forming cells were assayed in the spleen 6 d later. The results showed that the B cell recipients retained responsiveness to TNP-Ficoll for at least 3 mo after transfer. Responsiveness increased within the first 3 wk but then remained relatively constant. These findings imply that, at least for TNP-Ficoll-reactive cells, B cells residing in LN and thoracic duct lymph are not short-lived cells of recent marrow. Indeed, the data suggest that once the pool of recirculating B cells is fully formed in adult mice, further input of newly formed cells from the marrow into the recirculating pool is very limited.


1971 ◽  
Vol 134 (1) ◽  
pp. 188-200 ◽  
Author(s):  
Susan W. Craig ◽  
John J. Cebra

The proliferative and differentiative potential of Peyer's patch, peripheral blood, and popliteal lymph node cells was assessed by allogeneic cell transfer followed by quantitation of donor immunocytes by immunofluorescence. It was found that Peyer's patches are a highly enriched source of cells which have the potential to proliferate and differentiate into IgA-producing immunocytes and that the Peyer's patch cells are far more efficient in seeding the gut of irradiated recipient rabbits with donor cells that give rise to immunoglobulin-producing cells than cells from peripheral blood or popliteal lymph nodes.


1969 ◽  
Vol 130 (2) ◽  
pp. 287-297 ◽  
Author(s):  
E. B. Jacobson ◽  
G. J. Thorbecke

Popliteal lymph nodes were obtained from rabbits 4 days to 9 months after a primary injection of diphtheria toxoid or bovine γ-globulin into the footpad. The ability of cells from these nodes to proliferate upon reexposure to antigen in vitro was compared to the height of the secondary response produced by tissue fragments. In addition, a comparison was made between the responsiveness of draining and contralateral lymph nodes. While the secondary antibody response in vitro increased markedly with the time after immunization at which the lymph nodes were taken from the animals, the degree of proliferation induced by antigen was highest with cells from lymph nodes taken early after priming (peak day 7) and was very much lower with lymph node cells taken longer than 3 wk after priming. This striking difference between these two responses has been discussed. Contralateral lymph nodes were much inferior to draining nodes in their ability to give a secondary antibody response in vitro, and never gave a detectable proliferative response. This difference became less marked with time after priming, but could still be demonstrated after 4 months. These results suggest a concentration of primed cells in the lymphoid tissue draining the site of injection, and a slow release of these cells into the circulation, to be distributed to the remaining lymphoid tissue.


1966 ◽  
Vol 124 (5) ◽  
pp. 1017-1030 ◽  
Author(s):  
James L. Gowans ◽  
Jonathan W. Uhr

Lymphocytes were obtained from the thoracic duct of rats 1½ to 15 months after primary immunization with a single dose of bacteriophage ϕX 174. An intravenous injection of these lymphocytes conferred on heavily X-irradiated rats the ability to form antibody in a secondary-type manner after a first injection of ϕX. Negligible responses were obtained after cell transfer if the recipients were not challenged with antigen. Thoracic duct cells from some immunized donors were incubated in vitro for 24 hr before transfer in order to destroy selectively the large, dividing lymphocytes. The responsiveness conferred on X-irradiated recipients by such "incubated" inocula was then compared with that given by equal numbers of "fresh" thoracic duct cells. In all such comparisons the recipients of the "incubated" cells gave higher and more rapid antibody responses. It was concluded that the cells in thoracic duct lymph which carried immunological memory were small lymphocytes.


Blood ◽  
1967 ◽  
Vol 29 (4) ◽  
pp. 616-627 ◽  
Author(s):  
MASAHIKO KOTANI ◽  
AKIRA YAMASHITA ◽  
FUMIO RAI ◽  
KANJI SEIKI ◽  
ISOO HORII

Abstract Migration of a very large number of lymphocytes (211.8 x 106 per day) into the intestinal canal of rats, which weighed about 100 Gm., was found. Lymphocytes in the lumen of the intestine were 80.2 per cent small, 15.9 per cent medium and 3.9 per cent large. Any recycling of instilling cells into the intestine could not be observed. Lymphocytes labeled with H3-thymidine, obtained from both thymus and mesenteric lymph nodes of donor rats, were washed and injected into the intestine of recipient rats. H3 activity of the blood and thoracic duct lymph plasma after administration of labeled lymphocytes showed that DNA breakdown products from the lymphocytes in the gut were absorbed and transferred by way of both the portal vein and the thoracic duct. Evidence that the activity was actually incorporated into the DNA of proliferating cells of the recipient was demonstrated by autoradiographic means.


1983 ◽  
Vol 157 (6) ◽  
pp. 1758-1779 ◽  
Author(s):  
CW Pugh ◽  
GG MacPherson ◽  
HW Steer

Mesenteric lymphadenectomy in rats is followed by union of peripheral and central lymphatics, allowing the collection of intestine-derived peripheral lymph cells via the thoracic duct for several days. These cells include a proportion of nonlymphoid cells (NLC) that show irregular and heterogeneous surface morphology including long pseudopodia and veils. They stain variably for nonspecific esterase and acid phosphatase and are ATPase-positive. Their nuclei are irregular and some contain cytoplasmic inclusions, some of which show peroxidase activity and/or contain DNA. NLC have a range of densitites generally lower than that of lymphocytes. Freshly collected NLC express the leukocyte-common antigen (defined by monoclonal antibody MRC Ox 1) and Ia antigens (I-A and I-E subregion products defined by monoclonal antibodies) but they show a relative lack of other surface markers normally found on rat B or T lymphocytes (W3/13, W3/25, MRC Ox 12 (sIg), MRC Ox 19) or rat macrophages (FcR, C'R, mannose R, W3/25). In general NLC are only weakly adherent to glass or plastic. Although a subpopulation of NLC appear to have had a phagocytic past, freshly collected NLC fail to phagocytose a variety of test particles in vitro. NLC also appear incapable of pinocytosis in vitro. This heterogeneity may represent distinct subpopulations of NLC or different stages in the development of a single cell lineage. Direct cannulation of mesenteric lacteals shows that the majority of NLC are derived from the small intestine and their precursors appear to be present both in lamina propria and Peyer's patches. Kinetic studies, following irradiation or intravenous tritiated thymidine, show that the majority of NLC turn over rapidly in the intestine with a modal time of 3-5 d. Studies with bone marrow chimeras show that they are derived from a rapidly dividing precursor present in normal bone marrow. NLC occur at very low frequencies in normal thoracic duct lymph at all times following cannulation. The evidence presented suggests that NLC closely resemble mouse lymphoid dendritic cells. This conclusion is supported by evidence already obtained showing that NLC are potent stimulators of the semi-allogeneic rat primary mixed leukocyte reaction. In addition to the ceils resembling dendritic cells rare monocytoid cells are found in thoracic duct lymph of lymphadenectomized specific pathogen-free rats. The proportion of these cells increases greatly when the animals are conventionally housed. It seems probable that the physiological function of NLC is to act as accessory cells in the lymph nodes to which they normally drain. Methods for enriching NLC and thus facilitating analysis of their functions are discussed.


Sign in / Sign up

Export Citation Format

Share Document