scholarly journals Killer cells: a functional comparison between natural, immune T-cell and antibody-dependent in vitro systems.

1976 ◽  
Vol 143 (4) ◽  
pp. 772-780 ◽  
Author(s):  
R Kiessling ◽  
G Petranyi ◽  
K Kärre ◽  
M Jondal ◽  
D Tracey ◽  
...  

Previous reports have shown that spleen cells from nonimmune adult mice of certain strains do regularly kill Moloney leukemia virus-induced lymphomas in short-term 51Cr release assays. This naturally occuring killer (NK) cell had low adherent properties and had the morphological appearance of a lymphocyte. Still it lacked surface characteristics of mature T or B lymphocytes. In the present report a functional study was carried out, comparing in parallel the NK system, the T-cell killing across an H-2 barrier (anti-P815), and the antibody-dependent cell-mediated chicken red blood cell (CRBC) system. In contrast to the effector cells in the CRBC system, the NK cells were insensitive to erythrocyte antibody complement (EAC) rosette depletion and would pass through nylon wool columns. NK activity was not inhibited by the presence of heat-aggregated human or mouse gamma globulin, in contrast to the strong inhibition noted in the CRBC system. Sensitivity to trypsin pretreatment was noted in the NK system as well as in the immune P815 system, whereas the CRBC system was relatively trypsin resistant. Antitheta plus complement eliminated the anti-P815 activity, but did not touch the NK activity. The present results thus further distinguish the NK cell from cytotoxic T lymphocytes or from antibody-dependent killer cells.

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Norbert Kassay ◽  
János András Mótyán ◽  
Krisztina Matúz ◽  
Mária Golda ◽  
József Tőzsér

The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2003 ◽  
Vol 77 (14) ◽  
pp. 7728-7735 ◽  
Author(s):  
Jianxin Ye ◽  
Li Xie ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8+ T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1598-1606 ◽  
Author(s):  
T de Revel ◽  
A Mabondzo ◽  
G Gras ◽  
B Delord ◽  
P Roques ◽  
...  

Abstract The tropism of the human T-cell leukemia virus type 1 (HTLV-1) for the cells of monocyte-macrophage lineage was evaluated by the coculture of blood monocyte-derived macrophages, with irradiated cells of HTLV-1 producing cell lines MT2 or C91/PL. The susceptibility to HTLV-1 was assessed by the detection of viral DNA using the polymerase chain reaction method. HTLV-1 gene expression in the cells was detected using in situ hybridization and by immunofluorescent staining of viral antigen. The presence of type C virus-like particles detected by electron microscopy and the ability to infect normal cord blood lymphocytes demonstrated that the infected macrophages produced infectious virus. These results indicate that human macrophages are susceptible in vitro to productive HTLV-1 infection, and thus might be involved in the pathogenesis of HTLV-1-related diseases.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2417 ◽  
Author(s):  
Tram N. Dao ◽  
Sagar Utturkar ◽  
Nadia Atallah Lanman ◽  
Sandro Matosevic

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wuzhen Chen ◽  
Jingxin Jiang ◽  
Wenjie Xia ◽  
Jian Huang

Exosomes are a kind of cell-released membrane-form structures which contain proteins, lipids, and nucleic acids. These vesicular organelles play a key role in intercellular communication. Numerous experiments demonstrated that tumor-related exosomes (TEXs) can induce immune surveillance in the microenvironment in vivo and in vitro. They can interfere with the maturation of DC cells, impair NK cell activation, induce myeloid-derived suppressor cells, and educate macrophages into protumor phenotype. They can also selectively induce effector T cell apoptosis via Fas/FasL interaction and enhance regulatory T cell proliferation and function by releasing TGF-β. In this review, we focus on the TEX-induced immunosuppression and microenvironment change. Based on the truth that TEXs play crucial roles in suppressing the immune system, studies on modification of exosomes as immunotherapy strategies will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document