scholarly journals Tumor-Related Exosomes Contribute to Tumor-Promoting Microenvironment: An Immunological Perspective

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wuzhen Chen ◽  
Jingxin Jiang ◽  
Wenjie Xia ◽  
Jian Huang

Exosomes are a kind of cell-released membrane-form structures which contain proteins, lipids, and nucleic acids. These vesicular organelles play a key role in intercellular communication. Numerous experiments demonstrated that tumor-related exosomes (TEXs) can induce immune surveillance in the microenvironment in vivo and in vitro. They can interfere with the maturation of DC cells, impair NK cell activation, induce myeloid-derived suppressor cells, and educate macrophages into protumor phenotype. They can also selectively induce effector T cell apoptosis via Fas/FasL interaction and enhance regulatory T cell proliferation and function by releasing TGF-β. In this review, we focus on the TEX-induced immunosuppression and microenvironment change. Based on the truth that TEXs play crucial roles in suppressing the immune system, studies on modification of exosomes as immunotherapy strategies will also be discussed.

Leukemia ◽  
2021 ◽  
Author(s):  
Gerardo Ferrer ◽  
Byeongho Jung ◽  
Pui Yan Chiu ◽  
Rukhsana Aslam ◽  
Florencia Palacios ◽  
...  

AbstractCancer pathogenesis involves the interplay of tumor- and microenvironment-derived stimuli. Here we focused on the influence of an immunomodulatory cell type, myeloid-derived suppressor cells (MDSCs), and their lineage-related subtypes on autologous T lymphocytes. Although MDSCs as a group correlated with an immunosuppressive Th repertoire and worse clinical course, MDSC subtypes (polymorphonuclear, PMN-MDSC, and monocytic, M-MDSCs) were often functionally discordant. In vivo, PMN-MDSCs existed in higher numbers, correlated with different Th-subsets, and more strongly associated with poor clinical course than M-MDSCs. In vitro, PMN-MDSCs were more efficient at blocking T-cell growth and promoted Th17 differentiation. Conversely, in vitro M-MDSCs varied in their ability to suppress T-cell proliferation, due to the action of TNFα, and promoted a more immunostimulatory Th compartment. Ibrutinib therapy impacted MDSCs differentially as well, since after initiating therapy, PMN-MDSC numbers progressively declined, whereas M-MDSC numbers were unaffected, leading to a set of less immunosuppressive Th cells. Consistent with this, clinical improvement based on decreasing CLL-cell numbers correlated with the decrease in PMN-MDSCs. Collectively, the data support a balance between PMN-MDSC and M-MDSC numbers and function influencing CLL disease course.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Davide Raineri ◽  
Giuseppe Cappellano ◽  
Beatrice Vilardo ◽  
Federica Maione ◽  
Nausicaa Clemente ◽  
...  

Recently, we demonstrated that inducible T-cell costimulator (ICOS) shares its unique ligand (ICOSL) with osteopontin (OPN), and OPN/ICOSL binding promotes tumor metastasis and angiogenesis in the 4T1 breast cancer model. Literature showed that OPN promotes melanoma metastasis by suppressing T-cell activation and recruiting myeloid suppressor cells (MDSC). On the opposite, ICOS/ICOSL interaction usually sustains an antitumor response. Here, we engineered murine B16F10 melanoma cells, by transfecting or silencing ICOSL. In vitro data showed that loss of ICOSL favors anchorage-independent growth and induces more metastases in vivo, compared to ICOSL expressing cells. To dissect individual roles of the three molecules, we compared data from C57BL/6 with those from OPN-KO, ICOS-KO, and ICOSL-KO mice, missing one partner at a time. We found that OPN produced by the tumor microenvironment (TME) favors the metastasis by interacting with stromal ICOSL. This activity is dominantly inhibited by ICOS expressed on TME by promoting Treg expansion. Importantly, we also show that OPN and ICOSL highly interact in human melanoma metastases compared to primary tumors. Interfering with this binding may be explored in immunotherapy either for nonresponding or patients resistant to conventional therapies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1690-1690
Author(s):  
Xiaomeng Hu ◽  
Mo Dao ◽  
Kathy White ◽  
Corie Gattis ◽  
Ryan Clarke ◽  
...  

Abstract Off-the-shelf CAR T cells may offer advantages over autologous strategies, including ease of manufacturing, improved quality control with avoidance of malignant contamination and T cell dysfunction as well as the ability to generate a final product from healthy T cells. While TCR editing can effectively prevent graft-versus-host reactions, the significant host-versus-graft immune response against histoincompatible T cells prevents the expansion and persistence of allogeneic CAR T cells and mitigates the efficacy of this approach. The goal is to achieve improved rates of durable complete remissions by improving allogeneic CD19CAR persistence since it has been shown that autologous CAR T cells have greater durability over years than allogeneic CAR T cells (N Engl J Med. 2021;384(7):673-674). We describe here the engineering of human immune evasive CAR T cells based on our previously described hypoimmune technology (Nat Biotechnol 2019;37(3):252-258 and Proc Natl Acad Sci U S A 2021;118(28):e2022091118). A major challenge is that, while HLA deletion can result in adaptive immune evasion, innate reactivity is enhanced by this strategy. Since CD47 overexpression can block both NK cell and macrophage killing (J Exp Med 2021;218(3):e20200839), we hypothesized that T cells would lose their immunogenicity when human leukocyte antigen (HLA) class I and II genes are inactivated and CD47 is over-expressed. Human T cells from healthy donors were obtained by leukapheresis. To generate hypoimmune CD19CAR T cells, gene editing was used to delete b2m, CIITA, and TCR expression and lentiviral transduction was used to overexpress CD47 and CD19CAR containing a 4-1BB costimulatory domain to generate hypoimmune CAR T cells. Control T cells were unmanipulated except for lentiviral transduction used to overexpress the same CD19CAR and the deletion of the TCR. When transplanted into allogeneic humanized mice, hypoimmune CD19CAR T cells evade immune recognition by T cells even in previously sensitized animals as evidenced by a lack of T cell activation measured using ELISPOT analysis. In contrast, transplantation of non-hypoimmune-edited CD19CAR T cells generated from the same human donor resulted in a significant T cell activation (see figure: mean 59 and 558 spot frequencies for hypoimmune CD19CAR T cells and non-edited CD19CAR T cells, respectively; p<0.0001 unpaired T-test). In addition to evading T cells, immune cell assays show that CD47 overexpression protects hypoimmune CD19CAR T cells from NK cell and macrophage killing in vitro and in vivo. Relative CD47 expression levels were analyzed to understand the relevance of CD47 for protection from macrophage and NK cell killing. A blocking antibody against CD47 made the hypoimmune CAR T cells susceptible to macrophage and NK cell killing in vitro and in vivo, confirming the importance of CD47 overexpression to evade innate immune clearance. The hypoimmune CD19 CAR T cells retained their antitumor activity in both the Daudi and Nalm-6 B cell leukemia models, in vitro and in vivo. This indicated that the hypoimmune technology-i.e. isolated CD47 overexpression, deletion of b2m, CIITA, and TCR- did not show any effect on the cytotoxic potential of CD19 CAR T cells (see figure). These studies demonstrate that in vivo clearance of leukemic cells in NSG mice occurs across a range of tumor cell toCD19 CAR T cell ratios in a manner comparable to control, unedited CD19 CAR T cells (see figure). This result was validated using T cells from 3 different donors These findings show that, in these models, hypoimmune CD19 CAR T cells are functionally immune evasive in allogeneic humanized mouse recipients and have cytotoxic anti-tumor capacity. They suggest that hypoimmune CAR T cells could provide universal CAR T cells that are able to persist without immunosuppression. Furthermore, these data suggest that hypoimmune CD19 CAR T cells can be used in sensitized patients and for re-dosing strategies. Figure 1 Figure 1. Disclosures Hu: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dao: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. White: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Gattis: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Clarke: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Landry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Basco: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Tham: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Tucker: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Luo: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Bandoro: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Chu: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Young: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Foster: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dowdle: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Rebar: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Schrepfer: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company.


Author(s):  
Gerulf Hänel ◽  
Caroline Angerer ◽  
Katja Petry ◽  
Felix S. Lichtenegger ◽  
Marion Subklewe

AbstractMonocyte-derived Dendritic cells (DCs) have successfully been employed to induce immune responses against tumor-associated antigens in patients with various cancer entities. However, objective clinical responses have only been achieved in a minority of patients. Additionally, generation of GMP-compliant DCs requires time- and labor-intensive cell differentiation. In contrast, Blood DCs (BDCs) require only minimal ex vivo handling, as differentiation occurs in vivo resulting in potentially better functional capacities and survival. We aimed to identify a protocol for optimal in vitro activation of BDCs including the three subsets pDCs, cDC1s, and cDC2s. We evaluated several TLR ligand combinations and demonstrated that polyinosinic:polycytidylic acid [poly(I:C)] and R848, ligands for TLR3 and TLR7/8, respectively, constituted the optimal combination for inducing a positive co-stimulatory profile in all BDC subsets. In addition, TLR3 and TLR7/8 activation led to high secretion of IFN-α and IL-12p70. Simultaneous as opposed to separate tailored activation of pDCs and cDCs increased immunostimulatory capacities, suggesting that BDC subsets engage in synergistic cross-talk during activation. Stimulation of BDCs with this protocol resulted in enhanced migration, high NK-cell activation, and potent antigen-specific T-cell induction.We conclude that simultaneous activation of all BDC subsets with a combination of R848 + poly(I:C) generates highly immunostimulatory DCs. These results support further investigation and clinical testing, as standalone or in conjunction with other immunotherapeutic strategies including adoptive T-cell transfer and checkpoint inhibition.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 9521-9521
Author(s):  
H. N. Lode ◽  
Y. Zeng ◽  
S. Fest ◽  
G. Gaedicke

9521 Background: Fractalkine (FKN) is a unique CX3C chemokine (CX3CL1) known to induce adhesion and migration of leukocytes mediated by a membrane-bound and a soluble form. Methods: We found that FKN is expressed in >90% of 68 neuroblastoma (NB) samples as determined by cDNA microarray analysis. FKN expression was inversely correlated with MYCN amplification, suggesting a higher expression of FKN in MYCN non amplified tumors. We characterized the effect of FKN in the neuroblastoma microenvironment in a mouse model. We demonstrate that FKN released from NB cells mediate migration and adhesion of CD4+-, CD8+- and NK- cells and subsequent secretion of IFN-γ, in vitro and in vivo. However, the presence of FKN in NB microenvironments did not result in significant anti-NB activity. Results: Targeting of IL-2 into the NB microenvironment using anti-ganglioside GD2 antibody cytokine fusion proteins (ch14.18-IL-2) is currently under clinical evaluation. We investigated a the role of FKN in this context. For this purpose, IL-2 was targeted to GD2 positive NB microenvironments secreting FKN. Only mice bearing FKN and IL2 enriched NB microenvironments exhibited a reduction in primary tumor growth and a complete eradication of experimental liver metastases, in contrast to controls with only FKN or IL-2 enriched NB. This effect was specific since a non-specific antibody-IL-2 fusion protein ch225-IL-2 was ineffective. The mechanisms involved included NK-cell activation by targeted IL-2 into FKN rich NB as indicated by the enhancement of NK-cell mediated lysis using YAC-1 cells as targeted cells. The depletion of NK cells in vivo inhibited the therapeutic effect. Furthermore, co-culture of NXS2-FKN cells and NK cells in vitro induced the expression of IFN-γ by NK cells. However, the depletion of CD8+ T-cells in vivo abrogated the therapeutic effect, and these effector cells showed the highest cytolytic activity against NXS2 target cells in vitro. Finally, only the FKN and IL-2 enriched NB microenvironment resulted in T-cell activation and the release of proinflammatory cytokines. Conclusions: In conclusion our data suggest that targeted IL-2 therapy of FKN rich NB associated with MYCN non-amplified tumors may result in T-cell mediated immune responses. No significant financial relationships to disclose.


2006 ◽  
Vol 80 (14) ◽  
pp. 7146-7158 ◽  
Author(s):  
Petr O. Ilyinskii ◽  
Ruojie Wang ◽  
Steven P. Balk ◽  
Mark A. Exley

ABSTRACT The innate and adaptive immune responses have evolved distinct strategies for controlling different viral pathogens. Encephalomyocarditis virus (EMCV) is a picornavirus that can cause paralysis, diabetes, and myocarditis within days of infection. The optimal innate immune response against EMCV in vivo requires CD1d. Interaction of antigen-presenting cell CD1d with distinct natural killer T-cell (“NKT”) populations can induce rapid gamma interferon (IFN-γ) production and NK-cell activation. The T-cell response of CD1d-deficient mice (lacking all NKT cells) against acute EMCV infection was further studied in vitro and in vivo. EMCV persisted at higher levels in CD1d-knockout (KO) splenocyte cultures infected in vitro. Furthermore, optimal resistance to repeat cycles of EMCV infection in vitro was also shown to depend on CD1d. However, this was not reflected in the relative levels of NK-cell activation but rather by the responses of both CD4+ and CD8+ T-cell populations. Repeated EMCV infection in vitro induced less IFN-γ and alpha interferon (IFN-α) from CD1d-deficient splenocytes than with the wild type. Furthermore, the level of EMCV replication in wild-type splenocytes was markedly and specifically increased by addition of blocking anti-CD1d antibody. Depletion experiments demonstrated that dendritic cells contributed less than the combination of NK and NKT cells to anti-EMCV responses and that none of these cell types was the main source of IFN-α. Finally, EMCV infection in vivo produced higher levels of viremia in CD1d-KO mice than in wild-type animals, coupled with significantly less lymphocyte activation and IFN-α production. These results point to the existence of a previously unrecognized mechanism of rapid CD1d-dependent stimulation of the antiviral adaptive cellular immune response.


2011 ◽  
Vol 208 (3) ◽  
pp. 577-592 ◽  
Author(s):  
Li Wang ◽  
Rotem Rubinstein ◽  
Janet L. Lines ◽  
Anna Wasiuk ◽  
Cory Ahonen ◽  
...  

The immunoglobulin (Ig) superfamily consists of many critical immune regulators, including the B7 family ligands and receptors. In this study, we identify a novel and structurally distinct Ig superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is designated V-domain Ig suppressor of T cell activation (VISTA). VISTA is primarily expressed on hematopoietic cells, and VISTA expression is highly regulated on myeloid antigen-presenting cells (APCs) and T cells. A soluble VISTA-Ig fusion protein or VISTA expression on APCs inhibits T cell proliferation and cytokine production in vitro. A VISTA-specific monoclonal antibody interferes with VISTA-induced suppression of T cell responses by VISTA-expressing APCs in vitro. Furthermore, anti-VISTA treatment exacerbates the development of the T cell–mediated autoimmune disease experimental autoimmune encephalomyelitis in mice. Finally, VISTA overexpression on tumor cells interferes with protective antitumor immunity in vivo in mice. These findings show that VISTA, a novel immunoregulatory molecule, has functional activities that are nonredundant with other Ig superfamily members and may play a role in the development of autoimmunity and immune surveillance in cancer.


2020 ◽  
Vol 9 (8) ◽  
pp. 2666
Author(s):  
Gustavo R. Rossi ◽  
Jenifer P. Gonçalves ◽  
Timothy McCulloch ◽  
Rebecca B. Delconte ◽  
Robert J. Hennessy ◽  
...  

Natural killer (NK) cells are innate lymphocytes responsible for the elimination of infected or transformed cells. The activation or inhibition of NK cells is determined by the balance of target cell ligand recognition by stimulatory and inhibitory receptors on their surface. Previous reports have suggested that the glycosaminoglycan heparin is a ligand for the natural cytotoxicity receptors NKp30, NKp44 (human), and NKp46 (both human and mouse). However, the effects of heparin on NK cell homeostasis and function remain unclear. Here, we show that heparin does not enhance NK cell proliferation or killing through NK cell activation. Alternatively, in mice models, heparin promoted NK cell survival in vitro and controlled B16-F10 melanoma metastasis development in vivo. In human NK cells, heparin promisingly increased interferon (IFN)-γ production in synergy with IL-12, although the mechanism remains elusive. Our data showed that heparin is not able to increase NK cell cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document