scholarly journals Experimental conditions for obtaining suppressor and helper effects on the primary in vitro immune response by lymphocytes activated by polyclonal T-cell activators.

1977 ◽  
Vol 145 (3) ◽  
pp. 631-643 ◽  
Author(s):  
L Nespoli ◽  
G Möller ◽  
D Waterfield ◽  
R Ekstedt

The effect of the polyclonal T-cell activators (PTA) Con A and PHA on the specific immune response to sheep red blood cells (SRC) was studied. Addition of PTA either enhanced or suppressed the anti-SRC response, and two variables were found to affect the results: time of addition of the PTA and the strength of the response in control cultures not given PTA. If the response was high, even suboptimal PTA concentrations induced suppressive effects, but if the control response was low, due to deficient batches of sera or because of the absence of serum, the addition of PTA increased the response or restored it to normal levels. Suppression could be obtained if the PTA were added before or at the same time as the antigen and required high (optimal) PTA concentrations. If addition was delayed for 12-24 h the suppressive effects disappeared and previously suppressive concentrations of the PTA now caused an enhanced response. Analogous results were obtained if preactivated lymphocytes were added to the cultures instead of soluble PTA. Neither Con A, PHA, or lymphocytes preactivated by these PTA suppressed the polyclonal response induced by LPS or PPD. Irrespective of the time of addition and the culture conditions, enhancement of the anti-SRC response occurred at lower PTA concentrations than suppression. It was concluded that suppressor T cells, if they exist, do not act on B cells, but rather on helper cells needed for induction of thymus-dependent responses. The findings in this system are not compatible with the existence of a specific subset of suppressor T cells, but rather with the notion that suppression is caused by too much help.

Rheumatology ◽  
2019 ◽  
Vol 58 (11) ◽  
pp. 2051-2060 ◽  
Author(s):  
Giovanni Almanzar ◽  
Felix Kienle ◽  
Marc Schmalzing ◽  
Anna Maas ◽  
Hans-Peter Tony ◽  
...  

AbstractObjectiveRA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response.MethodsThe effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro.ResultsTofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed.ConclusionThis study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2876-2876
Author(s):  
Monica Ghei ◽  
David F. Stroncek ◽  
Maurizio Provenzano

Abstract In healthy subjects, primary infection with Cytomegalovirus (CMV) is usually mild or asymptomatic and is effectively controlled by the cell-mediated immune response. However, in immune compromised individuals, such as those with AIDS or after bone marrow transplantation, CMV reactivation is associated with significant morbidity until the individual’s immune system is completely reconstituted. One means of preventing post-transplant CMV infection is adoptive immunotherapy using CMV-specific cytotoxic T cells (CTLs) from the transplant donor. Several 9- and 10-mer HLA class I restricted peptides derived from the immune dominant CMV 65 kd matrix phosphoprotein (pp65) have been shown to produce CMV-specific CTLs. Two overlapping HLA-A24 restricted peptides have been specifically described: pp65 341–349 and pp65 341–350. These are 9- and 10-mer peptides that overlap except for the last amino acid phenylalanine (F) at the C-terminus [QYDPVAALF(F)]. Despite their similarity, the ability of these peptides to induce a T cell response has been reported to differ. Although it has been generally accepted that a unique CMV peptide is bound and presented by each separate HLA class I molecule, recent studies suggest that certain peptides are more promiscuous and may be presented by more than one HLA Class I antigen. For example, the 9-mer pp65 341–349 has been shown to stimulate CTLs from both HLA-A24 and Cw4 donors, while the 10-mer pp65 341–350 has been shown to be reactive with both HLA-A24 and A1 donors. The current investigation sought to compare the potency of these two peptides and determine the optimum peptide size for effective CMV adoptive immune therapy. Both peptides were tested for their ability to stimulate CMV-specific CTLs in HLA-A24, HLA-A1, and HLA-Cw4 restriction. In addition, a pp65 16-mer that included the 9- and 10-mers was tested for its ability to reactivate either CD8+ or CD4+ memory T cells. IFN-γ mRNA transcript as well as protein production were measured by in vitro cell culture assays. Peptide stimulations were performed on isolated CD8 and CD4 T lymphocytes by inducing the cells for 3 hours after a 2-week in vitro sensitization. The goal of the investigation was to determine whether both the 9- and the 10-mer peptides maintained high levels of CTL stimulation over time for all HLA restrictions studied. Moreover, it was important to investigate whether stimulation with the 16-mer, followed by restimulation by the two smaller peptides embedded within the larger sequence, led to effective T cell memory immune response. The 9- and 10-mer peptides effectively stimulated CTLs from HLA-A24, HLA-A1, and HLA-Cw4 CMV seropositive donors. Although both 9- and 10-mer were able to maintain high levels of stimulation over time for all restrictions, the 9-mer induced highest responses in cells expressing HLA-A24 (S.I. 4.07–528) or HLA-Cw4 (S.I. 4.15–483) while the 10-mer induced highest responses in cells expressing HLA-A24 (S.I. 3.5–528) or HLA-A1 (S.I. 8.25–615). The 16-mer peptide was also able to stimulate T cells from all HLA-A24, A1 and Cw4 donors (S.I. 6.95, 4.96, 5.02) at levels that are well maintained over time. This data confirmed that both the 9- and the 10-mer peptides are promiscuous and not restricted to a single HLA antigen. These peptides that have the ability to produce CMV-specific CTLs in patients with several different HLA types present a practical advantage over peptides that are restricted only to a single HLA type, and thus are optimal for CMV adoptive immune therapy.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 8501-8501 ◽  
Author(s):  
T. Gajewski ◽  
Y. Meng ◽  
H. Harlin

8501 Background: Despite frequent induction of tumor antigen-specific T cells in melanoma patients following vaccination, tumor regressions remain rare. This observation prompted systematic analysis of the melanoma tumor microenvironment to identify factors that may influence the effector phase of the anti-tumor immune response. Methods: Gene expression profiling using the Affymetrix platform was performed on a series of melanoma metastases, melanoma cell lines, and primary melanocyte cell lines. Confirmatory assays were done by real-time RT-PCR, protein array, immunohistochemistry (IHC), and in vitro chemokine migration assays. Results: Non- supervised hierarchical clustering revealed 3 major subsets of tumors, with the main clustering based on differential expression of T cell-derived transcripts. The presence of CD8+ T cells was confirmed by IHC. Tumors that contained T cells uniquely expressed high levels of multiple chemokines. Protein array confirmed high expression of CCL2, CCL4, and CCL5; real-time RT-PCR additionally confirmed relatively high levels of CXCL9, CXCL10, and CCL3 transcripts. Transwell assays confirmed that each of these 6 chemokines recruited CD8+ effector cells in vitro. Conclusions: We have identified a set of 6 chemokines that likely regulates recruitment of activated T cells into melanoma metastases. Tumors that lack such chemokines might not be capable of supporting the effector phase of the anti-tumor immune response. We suggest that chemokine profiling of tumor sites should be performed in clinical trials of active immunotherapy. No significant financial relationships to disclose.


1978 ◽  
Vol 147 (1) ◽  
pp. 123-136 ◽  
Author(s):  
RN Germain ◽  
J Theze ◽  
JA Kapp ◽  
B Benacerraf

A combination of in vitro and in vivo techniques were used to explore the mode of action of both crude and purified suppressive extracts specific for the random copolymer L-giutamic acid(60)-L-alanine(30)-L-tyrosine(10) (GAT- T(s)F) obtained from nonresponder DBA/1 (H-2(q)) mice. Normal DBA/1 spleen cells were incubated under modified Mishell-Dutton culture conditions for 2 days together with crude or purified GAT-T(s)F, and in the presence or absence of free GAT. These cells were then washed extensively and 3 × 10(6) viable cells transferred to syngeneic recipients, which were challenged at the same time with the immunogenic form of GAT complexed to methylated bovine serum albumin (GAT-MBSA). GAT-specific IgG plaque-forming cells (PFC) in the spleen were assayed 7 days later. In agreement with earlier in vitro studies on the action of GAT-T(s)F, it was demonstrated that under these conditions, low concentrations of GAT-T(s)F stimulated the development of cells which, aider transfer, are able to suppress the GAT PFC response to GAT-MBSA. The cells responsible for this suppression were shown to be T lymphocytes by using nylon wool-purified T cells for suppressor cell induction and by eliminating suppressive activity in cells cultured with crude GAT-T(s)F by treatment with anti-Thy 1.2 plus C before transfer. The suppressor T cells act in a specific manner failing to suppress significantly either anti-sheep erythrocyte or trinitrophenyl-ovalbumin primary PFC responses. For the induction of GAT-specific suppressor T cells in culture, a moiety bearing H- 2(K(q) or I(q)) determinants and also GAT, either bound to the crude GAT- T(s)F or added in nanogram amounts to antigen (GAT)-free purified GAT-T(s)F, were both required.


2010 ◽  
Vol 207 (12) ◽  
pp. 2733-2749 ◽  
Author(s):  
Rachel S. Friedman ◽  
Peter Beemiller ◽  
Caitlin M. Sorensen ◽  
Jordan Jacobelli ◽  
Matthew F. Krummel

The real-time dynamics of the T cell receptor (TCR) reflect antigen detection and T cell signaling, providing valuable insight into the evolving events of the immune response. Despite considerable advances in studying TCR dynamics in simplified systems in vitro, live imaging of subcellular signaling complexes expressed at physiological densities in intact tissues has been challenging. In this study, we generated a transgenic mouse with a TCR fused to green fluorescent protein to provide insight into the early signaling events of the immune response. To enable imaging of TCR dynamics in naive T cells in the lymph node, we enhanced signal detection of the fluorescent TCR fusion protein and used volumetric masking with a second fluorophore to mark the T cells expressing the fluorescent TCR. These in vivo analyses and parallel experiments in vitro show minimal and transient incorporation of TCRs into a stable central supramolecular activating cluster (cSMAC) structure but strong evidence for rapid, antigen-dependent TCR internalization that was not contingent on T cell motility arrest or cSMAC formation. Short-lived antigen-independent TCR clustering was also occasionally observed. These in vivo observations demonstrate that varied TCR trafficking and cell arrest dynamics occur during early T cell activation.


2016 ◽  
Vol 213 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Samuele Calabro ◽  
Antonia Gallman ◽  
Uthaman Gowthaman ◽  
Dong Liu ◽  
Pei Chen ◽  
...  

Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4+ T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4+ T cells in vitro, only bridging channel 33D1+ DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1+CD8+ DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.


2017 ◽  
Vol 8 (3) ◽  
pp. 433-438 ◽  
Author(s):  
N.G. Cortes-Perez ◽  
D. Lozano-Ojalvo ◽  
M.A. Maiga ◽  
S. Hazebrouck ◽  
K. Adel-Patient

Many studies have highlighted the immunomodulatory properties of the probiotic strain Lactobacillus casei BL23. Recently, we demonstrated the ability of this strain to modulate the Th2-oriented immune response in a mouse model of cow’s milk allergy based on the induction of a Th17-biased immune response. The probiotic function of L. casei has been also linked to gut-microbiota modifications which could been potentially involved in the immune regulation; however, its precise mechanism of action remains poorly understood. In this regard, recent studies suggest that gut microbiota induces a specific subset of CD4+FoxP3+ Treg cells that also express RORγt+, the specific transcription factor of Th17 cells. This new type of regulatory T cells, called type 3 Treg, displays suppressive function during intestinal inflammation, participating in inflammation control. We thus explored the ability of L. casei BL23 to specifically induce type 3 Treg cells, both in vitro and in vivo. Our results showed that intragastric administration of L. casei BL23 to mice induces local and systemic FoxP3+ RORγt+ type 3 Treg cells that could then participate in the beneficial effects of L. casei BL23 in different intestinal-related disorders.


1974 ◽  
Vol 140 (2) ◽  
pp. 356-369 ◽  
Author(s):  
Duane L. Peavy ◽  
Carl W. Pierce

The effects of soluble concanavalin A (Con A) or Con A-activated spleen cells on the generation of cytotoxic lymphocytes (CL) in mixed leukocyte cultures (MLC) were examined. Mitogenic concentrations of soluble Con A or small numbers of Con A-activated spleen cells substantially inhibited CL responses. The suppression was partial rather than absolute and was critically dependent upon the concentration and time of addition of soluble Con A or Con A-activated spleen cells to the MLC. Suppressive effects of Con-A activated spleen cells were mediated by T cells since suppressor cell activity was abrogated by treatment of spleen cells with anti-θ serum and complement before or after Con A activation. X irradiation of spleen cells before Con A treatment also abrogated generation of suppressor cell activity. After activation by Con A, however, the function of suppressor cells was radioresistant. Although the precise mechanism(s) of suppression is, as yet, unknown, the precursors of CL must be exposed to Con A-activated cells during the early phases of the immune response for suppression to occur. Kinetic studies revealed that suppression of CL responses was not due to a failure to initiate an immune response, but represented a response which developed initially, but subsequently aborted. The relevance of these observations to the concepts of T-cell-T-cell interaction and regulatory control of immune responses by T cells is discussed.


Sign in / Sign up

Export Citation Format

Share Document