scholarly journals Intragastric administration of Lactobacillus casei BL23 induces regulatory FoxP3+RORγt+ T cells subset in mice

2017 ◽  
Vol 8 (3) ◽  
pp. 433-438 ◽  
Author(s):  
N.G. Cortes-Perez ◽  
D. Lozano-Ojalvo ◽  
M.A. Maiga ◽  
S. Hazebrouck ◽  
K. Adel-Patient

Many studies have highlighted the immunomodulatory properties of the probiotic strain Lactobacillus casei BL23. Recently, we demonstrated the ability of this strain to modulate the Th2-oriented immune response in a mouse model of cow’s milk allergy based on the induction of a Th17-biased immune response. The probiotic function of L. casei has been also linked to gut-microbiota modifications which could been potentially involved in the immune regulation; however, its precise mechanism of action remains poorly understood. In this regard, recent studies suggest that gut microbiota induces a specific subset of CD4+FoxP3+ Treg cells that also express RORγt+, the specific transcription factor of Th17 cells. This new type of regulatory T cells, called type 3 Treg, displays suppressive function during intestinal inflammation, participating in inflammation control. We thus explored the ability of L. casei BL23 to specifically induce type 3 Treg cells, both in vitro and in vivo. Our results showed that intragastric administration of L. casei BL23 to mice induces local and systemic FoxP3+ RORγt+ type 3 Treg cells that could then participate in the beneficial effects of L. casei BL23 in different intestinal-related disorders.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cristian Doñas ◽  
Macarena Fritz ◽  
Valeria Manríquez ◽  
Gabriela Tejón ◽  
María Rosa Bono ◽  
...  

Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4+T cells. The forkhead box P3 transcription factor (Foxp3) is a crucial molecule regulating the generation and function of Tregs. Here we show that thefoxp3gene promoter becomes hyperacetylated inin vitrodifferentiated Tregs compared to naïve CD4+T cells. We also show that the histone deacetylase inhibitor TSA stimulated thein vitrodifferentiation of naïve CD4+T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4+Foxp3+Treg cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Gabriela Tejón ◽  
Valeria Manríquez ◽  
Jaime De Calisto ◽  
Felipe Flores-Santibáñez ◽  
Yessia Hidalgo ◽  
...  

Maintaining the identity of Foxp3+regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming ofin vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammationin vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during thein vitrogeneration of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity.


2020 ◽  
Author(s):  
Yvonne Wesseling-Rozendaal ◽  
Arie van Doorn ◽  
Karen Willard-Gallo ◽  
Anja van de Stolpe

AbstractCancer immunotolerance can be reversed by checkpoint blockade immunotherapy in some patients, but response prediction remains a challenge. CD4+ T cells play an important role in activating adaptive immune responses against cancer. Conversion to an immune suppressive state impairs the anti-cancer immune response and is mainly effected by CD4+ Treg cells. A number of signal transduction pathways activate and control functions of CD4+ T cell subsets. As previously described, assays have been developed which enable quantitative measurement of the activity of signal transduction pathways (e.g. TGFβ, NFκB, PI3K-FOXO, JAK-STAT1/2, JAK-STAT3, Notch) in a cell or tissue sample. Using these assays, pathway activity profiles for various CD4+ T cell subsets were defined and cellular mechanisms underlying breast cancer-induced immunotolerance investigated in vitro. Results were used to measure the immune response state in a clinical breast cancer study.MethodsSignal transduction pathway activity scores were measured on Affymetrix expression microarray data of resting, immune-activated, and immune-activated CD4+ T cells incubated with breast cancer tissue supernatants, and of CD4+ Th1, Th2, and Treg cells, and in a clinical study in which CD4+ T cells were derived from blood, lymph node and cancer tissue from primary breast cancer patients (n=10).ResultsIn vitro CD4+ T cell activation induced PI3K, NFκB, JAK-STAT1/2, and JAK-STAT3 pathway activity. Simultaneous incubation with primary cancer supernatant reduced PI3K and NFκB, and partly reduced JAK-STAT3, pathway activity, while simultaneously increasing TGFβ pathway activity; characteristic of an immune tolerant state. CD4+ Th1, Th2, and Treg cells all had a specific pathway activity profile, with activated immune suppressive Treg cells characterized by NFκB, JAK-STAT3, TGFβ, and Notch pathway activity. An immune tolerant pathway profile was identified in CD4+ T cells from tumor infiltrate of a subset of primary breast cancer patients which could be contributed to activated Treg cells. A Treg pathway profile was also identified in blood samples.ConclusionSignaling pathway assays can be used to quantitatively measure the functional immune response state of lymphocyte subsets in vitro and in vivo. Clinical results suggest that in primary breast cancer the adaptive immune response of CD4+ T cells has frequently been replaced by immunosuppressive Treg cells, potentially causing resistance to checkpoint inhibition. In vitro study results suggest that this effect is mediated by soluble factors from cancer tissue (e.g. TGFβ). Signaling pathway activity analysis on TIL and/or blood samples is expected to improve predicting and monitoring response to checkpoint inhibitor immunotherapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 822-822
Author(s):  
Petra Hoffmann ◽  
Kristina Doser ◽  
Matthias Edinger ◽  
Bernd Echtenacher

Abstract Abstract 822 Opportunistic fungal infections - in particular invasive aspergillosis (IA) – are still a cause of considerable morbidity and mortality in patients undergoing allogeneic bone marrow transplantation (BMT). Susceptibility is particularly high during neutropenia early after allo-BMT. However, this period is usually only temporary and nowadays largely manageable by prophylactic anti-fungal medication. Graft-versus-host disease (GVHD) represents another frequent, life-threatening complication after BMT. It is mediated by mature alloreactive donor T cells and leads to dysregulated pro-inflammatory cytokine secretion and target organ destruction. GVHD ≥ grade II has repeatedly been identified as independent risk factor for late onset IA. However, due to the simultaneous pharmacologic treatment of patients with GVHD, the contribution of GVHD itself to course and severity of a fungal infection is so far incompletely understood. To answer this question, we employed an MHC-mismatched murine allo-BMT model (C57BL/6 into BALB/c), in which lethally irradiated recipients received 2.5 × 106 BM cells either alone (control group without GVHD) or together with 1 × 106 splenocytes (development of GVHD within 28 d after BMT [clinical GHVD score on average 4.0 (range: 3–5.5)]). On d 28 after BMT half of the recipients within both groups were infected with Aspergillus fumigatus (A.f.) conidia (strain D141; 0.5 × 106 i.v.) and all animals were subsequently monitored for survival. Whereas all non-infected and 60% of infected BM control animals survived the observation period of 30 d, all infected recipients with GVHD died within 10 d after infection. As expected, 90% of uninfected recipients with GVHD also died within 30 d, however, animals of this group survived significantly longer than their infected counterparts (p=0.017 for infected vs. uninfected GVHD group and p=0.004 for infected GVHD versus infected BM control group; n=5–9). Comparable results were obtained after i.t. infection of recipients with and without GVHD. To analyze pathogen clearance, BMT recipients with or without GVHD were infected, sacrificed 1 or 2 d later and CFU determined in lung (after i.t. or i.v. infection) as well as spleen, liver, kidney and brain (after i.v. infection). CFU decreased rapidly and comparably in all organs and in both recipient groups, indicating that pathogen clearance is not impaired in allo-BMT recipients with GVHD. However, leukocytes re-isolated from animals with GVHD reacted much stronger to in vitro stimulation with live germinated A.f. conidia than cells from BM controls, as indicated by a significantly increased release of TNF (10951 ± 4673 pg/ml vs 862 ± 256 pg/ml from splenocytes of GVHD and BM control animals, respectively; p= 0.045, n=4–5 animals/group; 7640 ± 3524 pg/ml vs. 2556 ± 620 pg/ml from liver leukocytes of GVHD and BM control animals, respectively; p=0.02, n=3 independent experiments). Similar results were obtained for IL-6 and IFN-γ. These data suggest that an unrestrained and dysregulated immune response to the fungus occurs in animals with GVHD. To further investigate this hypothesis, we transplanted an additional group with donor CD4+CD25+ Treg cells (0.25 × 106/mouse), BM cells (2.5 × 106) and splenocytes (1 × 106), infected the mice with A.f. conidia and compared their survival rate to that of infected GVHD animals. Interestingly, whereas again all mice without Treg cell transfer (GVHD group) died after infection, 60% of the animals that received Treg cells survived the observation period of 30 d (p=0.011; n=10). Importantly, Treg cell transfer did not interfere with pathogen clearance. The in vitro immune response to live A.f. conidia of lymphocytes re-isolated from Treg recipients, however, as measured by TNF secretion, was significantly reduced and resembled that of BM controls (TNF from liver leukocytes in pg/ml: BM control: 1693 ± 374; GVHD: 8280 ± 3561; Treg: 1921 ± 642; p=0.02 BM vs GVHD and GVHD vs Treg; n=3 independent experiments). In summary, our data indicate that an uncontrolled anti-fungal immune response rather than an impaired ability to deal with the pathogen underlies the increased mortality observed in murine allo-BMT recipients with GVHD. Furthermore, we show that co-transferred CD4+CD25+ donor Treg cells do not interfere with pathogen clearance but confine the anti-fungal immune response and thereby increase survival of infected animals. Disclosures: No relevant conflicts of interest to declare.


1977 ◽  
Vol 145 (3) ◽  
pp. 631-643 ◽  
Author(s):  
L Nespoli ◽  
G Möller ◽  
D Waterfield ◽  
R Ekstedt

The effect of the polyclonal T-cell activators (PTA) Con A and PHA on the specific immune response to sheep red blood cells (SRC) was studied. Addition of PTA either enhanced or suppressed the anti-SRC response, and two variables were found to affect the results: time of addition of the PTA and the strength of the response in control cultures not given PTA. If the response was high, even suboptimal PTA concentrations induced suppressive effects, but if the control response was low, due to deficient batches of sera or because of the absence of serum, the addition of PTA increased the response or restored it to normal levels. Suppression could be obtained if the PTA were added before or at the same time as the antigen and required high (optimal) PTA concentrations. If addition was delayed for 12-24 h the suppressive effects disappeared and previously suppressive concentrations of the PTA now caused an enhanced response. Analogous results were obtained if preactivated lymphocytes were added to the cultures instead of soluble PTA. Neither Con A, PHA, or lymphocytes preactivated by these PTA suppressed the polyclonal response induced by LPS or PPD. Irrespective of the time of addition and the culture conditions, enhancement of the anti-SRC response occurred at lower PTA concentrations than suppression. It was concluded that suppressor T cells, if they exist, do not act on B cells, but rather on helper cells needed for induction of thymus-dependent responses. The findings in this system are not compatible with the existence of a specific subset of suppressor T cells, but rather with the notion that suppression is caused by too much help.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3987
Author(s):  
Nan Jing ◽  
Luoyang Wang ◽  
Huiren Zhuang ◽  
Guoqiang Jiang ◽  
Zheng Liu

Whereas dietary intervention with natural nutrients plays an important role in activating the immune response and holds unprecedented application potential, the underpinning mechanism is poorly understood. The present work was dedicated to comprehensively examine the effects of ultrafine jujube powder (JP) on the gut microbiota and, consequentially, the effects associated with the response rate to anti-PD-L1 treatment against murine colon adenocarcinoma. A murine colon adenocarcinoma model with anti-PD-L1 immunotherapy was established to evaluate how dietary interventions affect the microbiota. In vitro and in vivo experiments confirmed the role of SCFAs in the immune response. Oral administration of JP greatly improves the response of anti-PD-L1 treatment against murine colon adenocarcinoma. Such an improvement is associated with the alteration of gut microbiota which leads to an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, and an intensified infiltration of CD8+ T cells to the tumor microenvironment. This work demonstrates that JP is particularly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy by boosting cytotoxic CD8+ T cells in tumor-infiltrating lymphocytes. The experimental findings of the present study are helpful for the development of dietary intervention methods for cancer immunotherapy using natural nutrients.


Author(s):  
Kuan Lai ◽  
Wenjing Zhang ◽  
Songshan Li ◽  
Zhiwen Zhang ◽  
Shuangde Xie ◽  
...  

Abstract Pemphigus vulgaris (PV) is a chronic and potentially life-threatening autoimmune blistering disease. Aberrant mTOR pathway activity is involved in many autoimmune diseases. This study investigated the correlation of mTOR pathway (PI3K/AKT/mTOR/p70S6K) activity with the loss of balance in T helper 2/regulatory T (Th2/Treg) cells in the peripheral blood of PV patients. CD4+ T cells were isolated from 15 PV patients and 15 healthy controls (HCs), the ratios of Th2/CD4+ T cells and Treg/CD4+ T cells, the activity of the mTOR pathway (PI3K/AKT/mTOR/p70S6K), the transcription factors and cytokines of Th2 and Treg cells were detected. Primary CD4+ T cells from PV patients were cultured under Th2- or Treg-polarizing conditions with or without rapamycin in vitro. We found that PV patients showed significantly elevated serum IL-4 when compared with HCs, and serum IL-4 level was positively correlated with the titer of anti-Dsg1/3 antibody and disease severity, while the serum TGF-β level was negatively correlated with the titer of anti-Dsg3 antibody and disease severity. Meanwhile, PV patients showed increased Th2/CD4+ T cell ratio; decreased Treg/CD4+ T cell ratio; elevated mRNA of PI3K, AKT, mTOR and protein of PI3K (P85), AKT, p-AKT (Ser473), mTOR, p-mTOR (Ser2448), p-p70S6K (Thr389), GATA3; reduced protein of forkhead box protein 3. Rapamycin inhibited Th2 cell differentiation and promoted Treg cell differentiation in vitro. These data suggest a close association between mTOR pathway activation and the loss of balance in Th2/Treg cells in peripheral blood of PV patients. Inhibiting mTORC1 can help restore the Th2/Treg balance.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2014 ◽  
Vol 307 (2) ◽  
pp. G177-G186 ◽  
Author(s):  
Yuying Liu ◽  
Dat Q. Tran ◽  
Nicole Y. Fatheree ◽  
J. Marc Rhoads

Necrotizing enterocolitis (NEC) is an inflammatory disease with evidence of increased production of proinflammatory cytokines in the intestinal mucosa. Lactobacillus reuteri DSM 17938 (LR17938) has been shown to have anti-inflammatory activities in an experimental model of NEC. Activated effector lymphocyte recruitment to sites of inflammation requires the sequential engagement of adhesion molecules such as CD44. The phenotype of CD44+CD45RBlo separates T effector/memory (Tem) cells from naive (CD44−CD45RBhi) cells. It is unknown whether these Tem cells participate in the inflammation associated with NEC and can be altered by LR17938. NEC was induced in 8- to 10-day-old C57BL/6J mice by gavage feeding with formula and exposure to hypoxia and cold stress for 4 days. Survival curves and histological scores were analyzed. Lymphocytes isolated from mesenteric lymph nodes and ileum were labeled for CD4, CD44, CD45RB, intracellular Foxp3, and Helios and subsequently analyzed by flow cytometry. LR17938 decreased mortality and the incidence and severity of NEC. The percentage of Tem cells in the ileum and mesenteric lymph nodes was increased in NEC but decreased by LR17938. Conversely, the percentage of CD4+Foxp3+ regulatory T (Treg) cells in the intestine decreased during NEC and was restored to normal by LR17938. The majority of the Treg cells preserved by LR17938 were Helios+ subsets, possibly of thymic origin. In conclusion, LR17938 may represent a useful treatment to prevent NEC. The mechanism of protection by LR17938 involves modulation of the balance between Tem and Treg cells. These T cell subsets might be potential biomarkers and therapeutic targets during intestinal inflammation.


2003 ◽  
Vol 12 (5) ◽  
pp. 285-292 ◽  
Author(s):  
Scott B. Cameron ◽  
Ellen H. Stolte ◽  
Anthony W. Chow ◽  
Huub F. J. Savelkoul

Background:T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigensin vivodisplay strong effects on Thsubset differentiation. The aim of the study was to detect the intrinsic capacity of T cells to polarise under variousex vivoconditions.Methods:Purified CD4+T cells obtained from superantigen-treated mice were cultured under Thpolarising conditionsin vitro. By combining intracellular cytokine staining and subsequent flow cytometric analysis with quantitative cytokine measurements in culture supernatants by enzyme-linked immunosorbent assay (ELISA), the differential Thpolarising capacity of the treatment can be detected in a qualitative and quantitative manner.Results and conclusions:BALB/c mice were shown to be biased to develop strong Th2 polarised immune responses using Th0 stimulation of purified CD4+T cells from phosphate-buffered saline-treated mice. Nevertheless, our analysis methodology convincingly showed that even in these mice, Toxic Shock Syndrome Toxin-1 treatmentin vivoresulted in a significantly stronger Th1 polarising effect than control treatment. Our results indicate that populations of Thcells can be assessed individually for their differential Th1 or Th2 maturation capacityin vivoby analysing robustin vitropolarisation cultures combined with intracellular cytokine staining and ELISA.


Sign in / Sign up

Export Citation Format

Share Document