scholarly journals Anti-idiotype induced regulation of helper cell function for the response to phosphorylcholine in adult BALB/c mice.

1978 ◽  
Vol 148 (5) ◽  
pp. 1216-1227 ◽  
Author(s):  
K Bottomly ◽  
B J Mathieson ◽  
D E Mosier

An adoptive secondary antibody response to phosphorylcholine (PC) can be generated by the transfer of keyhole limpet hemocyanin (KLH)-primed T cells, PC-bovine gamma globulin-primed B cells, and PC-KLH into irradiated syngeneic BALB/c mice. If the KLH-primed T-cell donors were pretreated with anti-idiotype antibodies directed against the BALB/c PC-binding myeloma TEPC 15, their T cells were unable to collaborate effectively with PC-primed B cells; moreover, they could suppress the helper activity of T cells from normal mice for the PC-KLH response. The Ly phenotype of these T cells was found to be Ly 1-, 2+. The specificity of the suppressor T-cell population induced by anti-T15 treatment appears to be both for idiotype (hapten) and carrier, since the suppressor T cells fail to interfere with the antibody response to PC on a heterologous carrier, nor do they suppress the response to trinitrophenol-KLH.

1971 ◽  
Vol 134 (1) ◽  
pp. 66-82 ◽  
Author(s):  
J. F. A. P. Miller ◽  
J. Sprent

Collaboration between thymus-derived lymphocytes and nonthymus-derived antibody-forming cell precursors occurs in the primary antibody response of mice to heterologous erythrocytes and serum proteins. The purpose of the experiments reported here was to determine whether collaboration took place in an adoptive secondary antibody response. A chimeric population of lymphocytes was produced by reconstituting neonatally thymectomized CBA mice soon after birth with (CBA x C57BL)F1 thymus lymphocytes. These mice could be effectively primed to fowl immunoglobulin G (FγG) and their thoracic duct lymphocytes adoptively transferred memory responses to irradiated mice. The activity of these cells was impaired markedly by preincubation with CBA anti-C57BL serum and to a lesser extent by anti-θ-serum. Reversal of this deficiency was obtained by adding T cells in the form of thoracic duct cells from normal CBA mice. Cells from FγG-primed mice were at least 10 times as effective as cells from normal mice or from CBA mice primed to horse erythrocytes. These results were considered to support the concept that memory resides in the T cell population and that collaboration between T and B cells is necessary for an optimal secondary antibody response. Poor antibody responses were obtained in irradiated mice given mixtures of thoracic duct cells from primed mice and of B cells from unprimed mice (in the form of spleen or thoracic duct cells from thymectomized donors). In contrast to the situation with T cells, the deficiency in the B cell population could not be reversed by adding B cells from unprimed mice. It was considered that memory resides in B cells as well as in T cells and that priming probably entails a change in the B cell population which is fundamentally different from that produced in the T cell population.


1977 ◽  
Vol 146 (4) ◽  
pp. 1019-1032 ◽  
Author(s):  
TL Delovitch ◽  
HO McDevitt

A soluble allogeneic effect factor (AEF) was produced by using H-2 congenic mouse strains and a serum.free cell culture medium. An AEF derived from untreated activated responder cells and irradiated stimulator cells provided helper cell function in a primary and secondary antibody response for both T-cell-depleted responder B cells and stimulator B cells. This interaction may be determined by genes situated in the I-A and I-B regions: additional K-region control was not excluded. Ia antigens, but neither H-2 nor Ig determinants are molecular constituents of AEF. The active components of this AEF consist, in part, of Ia antigens derived from both the activated responder cell population and irradiated stimulator cell population. An AEF derived from Ia negative responder cells and irradiated T-cell- depleted stimulator cells helps a secondary antibody response of T-cell- depleted stimulator B cells but not responder B cells. This genetically restricted AEF contains Ia antigens determined by the stimulator haplotype but not the responder haplotype. The priming antigen, DNP- keyhole limpet hemocyanin, is not a component of restricted AEF. The data suggest that restricted AEF may be a product of a stimulator B cell and/or macrophage. They support the hypothesis that the recognition by allogeneic T cells of Ia antigens on B cells activates the B cell to IgG antibody production.


1979 ◽  
Vol 150 (6) ◽  
pp. 1399-1409 ◽  
Author(s):  
K Bottomly ◽  
D E Mosier

The X-linked CBA/N defect in B cell function precludes an antibody response to phosphorylcholine (PC). Accordingly, (CBA/N X BALB/c)F1 male mice are unresponsive to PC and lack circulating immunoglobulin bearing the T15 idiotype characteristic of BALB/C anti-PC antibody. In contrast, (CBA/N X BALB/c)F1 female mice respond to PC and greater than 80% of the anti-PC antibody is T15+. No T-cell abnormalities are known to be associated with the CBA/N mutation. These experiments compared the ability of helper T cells from either (CBA/N X BALB/c)F1 male (T15-) or F1 female (T15+) mice to help F1 female B cells respond to PC and to influence the level of T15 expression. The results indicate that although F1 male T cells collaborated with F1 female B cells just as efficiently as F1 female T cells for the total anti-PC response, the percentage of T15 expression induced by F1 male T cells fell dramatically. The (CBA/N X BALB/c)F1 male thus appear to lack a helper T-cell subset required for dominant idiotype production. This helper T cell defect could be repaired by adding F1 female T cells primed to a second carrier to F1 male T cells and restimulating the cell mixture with PC coupled to the antigen used to prime the F1 male cells plus free second carrier. This result implies that conventional helper T cells derived from the F1 male donor can collaborate with a distinct helper T-cell subset from the F1 female donor which recognizes both carrier and idiotype to induce an anti-PC antibody response dominated by the T15 clonotype.


1976 ◽  
Vol 144 (1) ◽  
pp. 277-281 ◽  
Author(s):  
P Debre ◽  
C Waltenbaugh ◽  
ME Dorf ◽  
B Benacerraf

Previous reports from our laboratory have demonstrated the stimulation of specific suppressor T cells in genetic nonresponder mice after immunization with the terpolymer of L- glutamic acid, L-alanine, and L-tyrosine (GAT) (1,2) and with the copolymer of L-glutamic acid and L-tyrosine (GT) (3-5). These findings raise two important questions: (a) do the specific suppressor T cells inhibit an antibody response which would otherwise develop in nonresponder mice; and, (b) can specific helper T cells inhibit an antibody response which would otherwise develop in nonresponder mice; and, (b) can specific helper T-cell activity be detected in these animals. Responsiveness appears to be completely dominant over suppression in (responder x suppressor)F(1) hybrids, therefore, we have been unable to detect suppressor cells in these hybrids after conventional immunization with GAT (2). However , using special conditions of antigen administration, GAT helper activity could be demonstrated in nonresponder DBA/1 (suppressor) mice. Thus, GAT-specific helper activity was not detected in these nonresponder animals after immunization with GAT irrespective of the adjuvant used, but could be stimulated by macrophage-bound GAT or by GAT complexed with methylated bovine serum albumin GAT-MBSA (6). In the current report we have taken advantage of the fact that suppressor T-cell activity is more sensitive to cyclophosphamide treatment than T-cell helper activity (7) to demonstrate the presence of GT-specific helper activity in nonresponder BALB/c mice. We describe: (a) the dose of cyclophosphamide and conditions of treatment which inhibits the well-documented stimulation of specific suppressor T cells in BALB/c mice injected with GT previous to immunization with GT-MBSA, and (b) the ability of cyclophosphamide to permit the development of primary PFC responses to GT in these nonresponder mice. These cyclophosphamide-induced responses are not characterized by the high levels of antibody detected in genetic responder animals.


1974 ◽  
Vol 140 (1) ◽  
pp. 253-266 ◽  
Author(s):  
Toshitada Takemori ◽  
Tomio Tada

Passive transfer of thymocytes and spleen cells from donors primed with keyhole limpet hemocyanin (KLH) caused significant decrease in the average avidity of anti-DNP antibodies produced by direct and indirect PFC in the recipients in both primary and adoptive secondary antibody responses against DNP-KLH. The analysis of the avidity distribution of antibodies produced by plaque-forming cells (PFC) indicated that the observed decrease in the average avidity is primarily due to the selective loss of high avidity subpopulation of PFC leaving low avidity subpopulation relatively unaffected. The degree of suppression in antibody avidity did not correlate with the reduction in the number of PFC, and thus causing the "shift" of avidity distribution of PFC to the low avidity end. These results indicate that the "maturation" of antibody in the T-cell-dependent antibody response is influenced by the carrier-specific suppressor T cells with respect to the emergence and selection of B cells having high affinity receptors for hapten. It is suggested that B cells binding antigen with high affinity receptors would be more easily affected than those with low affinity receptors by specific suppressor T cells which are capable of reacting the carrier portion of the same antigen.


1980 ◽  
Vol 152 (5) ◽  
pp. 1274-1288 ◽  
Author(s):  
P Marrack ◽  
J W Kappler

The mode of action by bystander helper T cells was investigated by priming (responder X nonresponder) (B6A)F1 T cells with poly-L-(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys [(TG)-A--L] and titrating the ability of these cells to stimulate an anti-sheep red blood cell (SRBC) response of parental B cells and macrophages in the presence of (TG)-A--L. Under limiting T cell conditions, and in the presence of (TG)-A--L, (TG)-A--L-responsive T cells were able to drive anti-SRBC responses of high-responder C57BL/10.SgSn (B10) B cells and macrophages (M0), but not of low-responder (B10.A) B cells and M0. Surprisingly, the (TG)-A--L-driven anti-SRBC response of B10.A B cells was not restored by addition of high-responder acessory cells, in the form of (B6A)F1 peritoneal or irradiated T cell-depleted spleen cells, or in the form of B10 nonirradiated T cell-depleted spleen cells. These results suggested that (TG)-A--L-specific Ir genes expressed by B cells controlled the ability of these cells to be induced to respond to SRBC by (TG)-A--L-responding T cells, implying that direct contact between the SRBC-binding B cell precursor and the (TG)-A--L-responsive helper T cells was required. Analogous results were obtained for keyhold limpet hemocyanin (KLH)-driven bystander help using KLH-primed F1 T cells restricted to interact with cells on only one of the parental haplotypes by maturing them in parental bone marrow chimeras. It was hypothesized that bystander help was mediated by nonspecific uptake of antigen [(TG)-A--L or KLH] by SRBC-specific b cells and subsequent display of the antigen on the B cell surface in association with Ir of I-region gene products, in a fashion similar to the M0, where it was then recognized by helper T cells. Such an explanation was supported by the observation that high concentrations of antigen were required to elicit bystander help. This hypothesis raises the possibility of B cell processing of antigen bound to its immunoglobulin receptor and subsequent presentation of antigen to helper T cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Sara Ireland ◽  
Nancy Monson

Multiple sclerosis is a chronic debilitating autoimmune disease of the central nervous system. The contribution of B cells in the pathoetiology of MS has recently been highlighted by the emergence of rituximab, an anti-CD20 monoclonal antibody that specifically depletes B cells, as a potent immunomodulatory therapy for the treatment of MS. However, a clearer understanding of the impact B cells have on the neuro-inflammatory component of MS pathogenesis is needed in order to develop novel therapeutics whose affects on B cells would be beneficial and not harmful. Since T cells are known mediators of the pathology of MS, the goal of this review is to summarize what is known about the interactions between B cells and T cells, and how current and emerging immunotherapies may impact B-T cell interactions in MS.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1245-1254 ◽  
Author(s):  
N Chirmule ◽  
N Oyaizu ◽  
VS Kalyanaraman ◽  
S Pahwa

Abstract Despite the occurrence of hypergammaglobulinemia in human immunodeficiency virus (HIV) infection, specific antibody production and in vitro B-cell differentiation responses are frequently impaired. In this study, we have examined the effects of HIV envelope glycoprotein gp120 on T-helper cell function for B cells. In the culture system used, B-cell functional responses were dependent on T-B- cell contact, since separation of T and B cells in double chambers by Transwell membranes rendered the B cells unresponsive in assays of antigen-induced B-cell proliferation and differentiation. Cytokines secreted by T cells were also essential, since anti-CD3 monoclonal antibody (mAb)-activated, paraformaldehyde-fixed T-cell clones failed to induce B-cell proliferation and differentiation. Pretreatment of the CD4+ antigen-specific T cells with gp120 was found to impair their ability to help autologous B cells, as determined by B-cell proliferation, polyclonal IgG secretion, and antigen-specific IgG secretion. The gp120-induced inhibition was specific in that it was blocked by soluble CD4. Furthermore, only fractionated small B cells (which are T-cell-dependent in their function) manifested impaired responses when cultured with gp120-treated T cells. Antigen-induced interleukin (IL)-2 and IL-4, but not IL-6, secretion were markedly reduced in gp120-treated T-cell clones. Addition of exogenous cytokines failed to compensate for defective helper function of gp120-treated T cells. The findings in this study indicate that gp120 impairs helper functions of CD4+ T cells by interfering with T-B-cell contact- dependent interaction; the inhibitory effects of soluble envelope proteins of HIV may contribute to the immunopathogenesis of the HIV- associated disease manifestations.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 963-963 ◽  
Author(s):  
Kieron Dunleavy ◽  
Pratip Chattopadhyay ◽  
Junichi Kawada ◽  
Sara Calattini ◽  
Emma Gostick ◽  
...  

Abstract Abstract 963 Lymphomatoid granulomatosis (LYG) is a rare angiocentric/angiodestructive EBV+ B-cell lymphoproliferative disorder. LYG has a spectrum of clinical aggressiveness and histological grading. Grading relates to the number of EBV-positive B-cells with grade I /II being usually polyclonal or oligoclonal and grade III monoclonal. Historical outcomes of patients treated with steroids and/or chemotherapy have been poor with median survivals of 14 months. We have shown that LYG is associated with reduced CD8+ and CD4+ T-cells, and hypothesized that patients have defective immune surveillance of EBV+ B-cells. We are investigating the use of interferon-alpha (IFα) for grade I/II disease and have characterized the maturation, exhaustion, and homeostatic potential of bulk and antigen-specific CD8 T-cells. Patients with grade III disease are treated with DA-EPOCH-R. Characteristics of 53 patients on study include male sex 68%; median age (range) 46 (17-67) and median ECOG P.S. 1 (0-3). Disease sites include lung 98%, CNS 38%, kidney 15%, skin 17% and liver 19%. LYG grades are I –30%, II-26% and III-44%. Prior treatment was none –28%, chemotherapy+/− R-34% and steroids alone – 40% of patients. Herein, we report the outcome of patients with grade I/II LYG treated with IFα. IFα was commenced at 7.5 MIU TIW and dose escalated until best response and then continued for 1 year. Of 31 patients with grade I/II LYG treated with IFα, 28 were evaluable for response. Of these, 17 (60%) achieved a complete remission and 6 (21%) patients progressed with grade III disease and received chemotherapy. Of 10 patients with CNS disease, 9 achieved a CR with IFα. At a median follow-up time of 5 years, the progression-free survival of grade I/II LYG was 56%. The median time to remission was 9 months (3-40) and median IFα dose was 20 MIUs (7-40). Median EBV viral loads at study entry were 18 copies/106 genome equivalents (0-22727) (normal<200). We looked at T-cell kinetics in patients who achieved complete remission and observed statistically significant recovery in both CD4 (p=0.034) and CD8 p=0.034) cells after interferonα. We were interested in further elucidating T-cell function and used polychromatic flow cytometry to characterize CD8 T-cells in the peripheral blood of patients before and after IFα. In 17 patient samples, cells were stained with peptide-MHC I (pMHCI) multimers directed against T-cells specific for epitopes from latent and lytic EBV proteins along with antibodies defining CD8 sub-populations. Influenza or cytomegalovirus-specific pMHCI multimers were controls. We observed no difference in the frequency of EBV specific CD8 T-cells in the blood of LYG patients compared to controls. However, CD27 and PD1 expression appeared to be altered in the bulk CD8+ T-cells and in selected EBV-specific populations in LYG patients; these changes were marginally significant. Following completion of IFα, expression of PD-1, CD27 and CD127 were at normal levels. Evidence from some LYG patients suggests that IL2 production by EBV-specific T-cells is lost during LYG, and normalized after therapy. Our results suggest that LYG, an EBV-associated disease, may arise in the setting of a global deficit in CD8 T-cells with selected defects in EBV-specific immunity that resolve with successful therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 976-976 ◽  
Author(s):  
John C. Riches ◽  
Ajanthah Sangaralingam ◽  
Shahryar Kiaii ◽  
Tracy Chaplin ◽  
Demet Cekdemir ◽  
...  

Abstract Abstract 976 Lenalidomide has recently been demonstrated to have significant activity in chronic lymphocytic leukemia (CLL). Its mechanism of action in this disease is not well understood, but it is thought to act primarily by enhancing anti-tumor immunity and reducing production of pro-tumoral factors in the CLL microenvironment. We have previously demonstrated alterations in the expression of cytoskeletal genes in T-cells from patients with CLL and have subsequently shown that these changes translate into a deficit in T-cell function, due to impaired actin polymerization resulting in defective immunological synapse formation. Treatment of both autologous T-cells and CLL cells with lenalidomide was necessary to repair this defect, suggesting that this may be a key component of this agent's activity in CLL. Therefore we examined the effect of lenalidomide on the global gene expression profiles of isolated B-cells and T-cell subsets from CLL patients and healthy donors. Peripheral blood mononuclear cells from patients with untreated CLL or healthy donors were cultured in the presence of 1 μM lenalidomide or vehicle control for 48 hours. The lymphocyte subsets were isolated, followed by RNA extraction and gene expression profiling using the Affymetrix HGU133Plus2.0 platform. Lenalidomide treatment had similar effects on gene expression in T-cells from both patients with CLL and healthy donors. The most prominent changes in expression were of genes involved in cytoskeletal signaling including a 20-fold increase in WASF1 (Wiskott Aldrich Syndrome protein family, member 1), and greater than 2-fold increases in the expression of Rac-family member RHOC, (Ras homolog gene family, member C), actin binding proteins CORO1B (Coronin 1B), PARVA (Parvin alpha), and the Rho guanine nucleotide exchange factors (GEFs), ARHGEF5 and ARHGEF7. We also observed changes in genes regulating integrin signaling including PXN (Paxilin) and FAK (Focal adhesion kinase), and a shift towards Th1 differentiation with upregulation of TNF, IL-12R, and IL-18R. In addition, we noted increased expression of the transcription factors IKZF1, IKZF4 and IRF4, genes involved in the Ikaros pathways that are essential for hematopoiesis and control of lymphoid proliferation. These changes in gene expression provide further evidence that an important mechanism of action of lenalidomide is the upregulation of the actin cytoskeletal network including Rho-GTPases and integrin activation signaling, and are consistent with our previous observations concerning the functional repair of T-cells in CLL. Initial analysis of the effect of lenalidomide on the gene expression profiles of the CLL B-cells showed similar changes to those previously described in vivo from CLL patients receiving single agent lenalidomide in a clinical trial (Chen et al. JCO 2010). In our system, lenalidomide treatment resulted in a greater than 2-fold upregulation of 189 genes, and a greater than 2-fold downregulation of 85 genes in CLL B-cells. We observed increased expression of several genes belonging to the TNF superfamily including TNF-α, OX40L, and APRIL, and the receptors DR5, DCR2, and OX40. Many of these are known to mediate apoptosis signaling, and we also observed increased expression of pro-apoptotic genes such as FAS, BID (BH3 interacting domain death agonist), HRK (Harakiri), and CFLAR (CASP8 and FADD-like apoptosis regulator), and cell cycle regulators CDKN1A and CDKN1C (Cyclin-dependent kinase inhibitors 1A and 1C). Lenalidomide also upregulated expression of several genes of known importance in the CLL microenvironment, including the chemokines CCL3 and CCL4, CD40, CD274 (PD-L1), CD279 (PD-1), and adhesion molecules LFA3 and ICAM1. The effect of lenalidomide on the gene expression profiles of normal B-cells was less marked, with greater than 2-fold upregulation of 51 genes and downregulation of 12 genes. However, we did observe that lenalidomide treatment induced upregulation of genes involved in cytoskeletal pathways such as RND1 (Rho family GTPase 1), RHOQ (Ras homolog gene family, member Q), and MYO1B (myosin 1B). In conclusion, investigation of the effect of lenalidomide on gene expression profiling in CLL suggests that the drug acts both to enhance T-cell function, and to render the CLL cells more susceptible to immune cell mediated killing. Disclosures: Gribben: Roche: Honoraria; Celgene: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria; Pharmacyclics: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document