scholarly journals Cellular basis of regulation of expression of idiotype. I. T-suppressor cells specific for MOPC 460 idiotype regulate the expression of cells secreting anti-TNP antibodies bearing 460 idiotype.

1979 ◽  
Vol 149 (3) ◽  
pp. 592-600 ◽  
Author(s):  
C Bona ◽  
W E Paul

An idiotype of the dinitrophenyl-binding myeloma protein MOPC 460 was expressed on a small but significant proportion of anti-TNP antibodies which appeared after in vivo or in vitro immunization of BALB/c mice with three T-independent TNP antigens. In vitro experiments show that the depletion of T cells before culture increased significantly the number of plaques secreting anti-TNP antibodies bearing MOPC 460 idiotype (460Id). T cells from BALB/c mice, but not from C.B20 mice, exhibit this suppressor activity. Plate-binding experiments indicate that the suppressive action of the T-lymphocyte population depends on a cell which can bind to MOPC 460 myeloma protein. The possible role of these normally occurring, idiotype-specific T cells on expression of 460Id in the anti-TNP antibody response of BALB/c mice is discussed.

1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2021 ◽  
Author(s):  
Hanna S. Hong ◽  
Nneka E. Mbah ◽  
Mengrou Shan ◽  
Kristen Loesel ◽  
Lin Lin ◽  
...  

AbstractApoptotic cell death is a cell-intrinsic, immune tolerance mechanism that regulates the magnitude and resolution of T cell-mediated responses. Evasion of apoptosis is critical for the generation of memory T cells, as well as autoimmune T cells, and knowledge of the mechanisms that enable resistance to apoptosis will provide insight into ways to modulate their activity during protective and pathogenic responses. IL-17-producing CD4 T cells (TH17s) are long-lived, memory cells. These features enable their role in host defense, chronic inflammatory disorders, and anti-tumor immunity. A growing number of reports now indicate that TH17s in vivo require mitochondrial oxidative phosphorylation (OXPHOS), a metabolic phenotype that is poorly induced in vitro. To elucidate the role of OXPHOS in TH17 processes, we developed a system to polarize TH17s that metabolically resembled their in vivo counterparts. We discovered that directing TH17s to use OXPHOS promotes mitochondrial fitness, glutamine anaplerosis, and an anti-apoptotic phenotype marked by high BCL-XL and low BIM. Through competitive co-transfer experiments and tumor studies, we further revealed how OXPHOS protects TH17s from cell death while enhancing their persistence in the periphery and tumor microenvironment. Together, our work demonstrates a non-classical role of metabolism in regulating TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.


1979 ◽  
Vol 149 (4) ◽  
pp. 815-823 ◽  
Author(s):  
C Bona ◽  
R Hooghe ◽  
P A Cazenave ◽  
C Leguérn ◽  
W E Paul

The antibody response of BALB/c mice to trinitrophenyl (TNP)-levan or TNP-Nocardia water-soluble mitogen (NWSM) includes a small but significant fraction of antibodies which share idiotypes (Id) with the dinitrophenyl (DNP)- and TNP-binding myeloma protein MOPC-460. Active immunization of BALB/c mice with MOPC-460 or passive administration of anti-460-Id antibodies suppresses the 460-Id+ component of the anti-TNP response. By contrast, active immunization of BALB/c with anti-460-Id antibodies or passive administration of BALB/c anti-[anti-460-Id] antibodies leads to an enhanced 460-Id+ component in the anti-TNP antibodies produced in response to TNP-levan or TNP-NWSM. This enhanced 460-Id+ response appears to be a result of the elimination of suppressor T lymphocytes specific for the 460-Id as T lymphocytes from such mice are unable to suppress the in vitro 460-Id+ response to TNP-NWSM whereas normal T cells are suppressive. These results indicate that suppressor cells specific for 460-Id normally regulate the activation of precursors of cells capable of secreting 460-Id+ anti-TNP antibodies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yumei Zhang ◽  
Yulong Wu ◽  
Hua Liu ◽  
Wenci Gong ◽  
Yuan Hu ◽  
...  

Abstract Background CD4+ T helper (Th) cells play critical roles in both host humoral and cellular immunity against parasitic infection and in the immunopathology of schistosomiasis. T follicular helper (Tfh) cells are a specialized subset of Th cells involved in immunity against infectious diseases. However, the role of Tfh cells in schistosome infection is not fully understood. In this study, the dynamics and roles of Tfh cell regulation were examined. We demonstrated that granulocytic myeloid-derived suppressor cells (G-MDSC) can suppress the proliferation of Tfh cells. Methods The levels of Tfh cells and two other Th cells (Th1, Th2) were quantitated at different Schistosoma japonicum infection times (0,3, 5, 8, 13 weeks) using flow cytometry. The proliferation of Tfh cells stimulated by soluble egg antigen (SEA) and soluble worm antigen (SWA) in vivo and in vitro were analyzed. Tfh cells were co-cultured with MDSC to detect the proliferation of Tfh cells labelled by 5(6)-carboxyfluorescein diacetate N-succinimidyl ester. We dynamically monitored the expression of programmed cell death protein 1 (PD-1) on the surface of Tfh cells and programmed cell death ligand 1 (PD-L1) on the surface of MDSC at different infection times (0, 3, 5, 8 weeks). Naïve CD4+ T cells (in Tfh cell differentiation) were co-cultured with G-MDSC or monocytic MDSC in the presence, or in the absence, of PD-L1 blocking antibody. Results The proportion of Tfh cells among CD4+ T cells increased gradually with time of S. japonicum infection, reaching a peak at 8 weeks, after which it decreased gradually. Both SEA and SWA caused an increase in Tfh cells in vitro and in vivo. It was found that MDSC can suppress the proliferation of Tfh cells. The expression of PD-1 on Tfh cells and PD-L1 from MDSC cells increased with prolongation of the infection cycle. G-MDSC might regulate Tfh cells through the PD-1/PD-L1 pathway. Conclusions The reported study not only reveals the dynamics of Tfh cell regulation during S. japonicum infection, but also provides evidence that G-MDSC may regulate Tfh cells by PD-1/PD-L1. This study provides strong evidence for the important role of Tfh cells in the immune response to S. japonicum infection. Graphical abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2021 ◽  
Author(s):  
Pavlina Chuntova ◽  
Yafei Hou ◽  
Ryosuke Naka ◽  
Yitzhar Goretsky ◽  
Takahide Nejo ◽  
...  

ABSTRACTBackgroundRigorous preclinical studies of chimeric antigen receptor (CAR) immunotherapy will require large quantities of consistent and high-quality CAR-transduced T (CART)-cells that can be used in syngeneic mouse glioblastoma (GBM) models. To this end, we developed a novel transgenic (Tg) mouse strain with a fully murinized CAR targeting epidermal growth factor receptor variant III (EGFRvIII).MethodsWe first established the murinized version of EGFRvIII-CAR and validated its function using a retroviral vector (RV) in C57BL/6J mice bearing syngeneic SB28 GBM expressing EGFRvIII. Next, we created C57BL/6J-background Tg mice carrying the anti-EGFRvIII-CAR downstream of a Lox-Stop-Lox cassette in the Rosa26 locus. We bred these mice with CD4-Cre Tg mice to allow CAR expression on T-cells and evaluated the function of the CART-cells both in vitro and in vivo. In order to inhibit immunosuppressive myeloid cells within SB28 GBM, we also evaluated a combination approach of CART and an anti-EP4 compound (ONO-AE3-208).ResultsBoth RV- and Tg-CART-cells demonstrated specific cytotoxic activities against SB28-EGFRvIII cells. A single intravenous infusion of EGFRvIII-CART-cells prolonged the survival of glioma-bearing mice when preceded by a lymphodepletion regimen with recurrent tumors displaying profound EGFRvIII loss. The addition of ONO-AE3-208 resulted in long-term survival in a fraction of CART-treated mice and those survivors demonstrated delayed growth of subcutaneously re-challenged both EGFRvIII+ and parental EGFRvIII− SB28.ConclusionOur new syngeneic CAR Tg mouse model can serve as a useful tool to address clinically relevant questions and develop future immunotherapeutic strategies.Importance of studyThe majority of preclinical studies evaluating CART therapy for GBM have utilized xenografts implanted into immunocompromised mice. Because the successful development of these strategies will depend on the understanding of critical interactions between therapeutic cells and the endogenous immune environment, it is essential to develop a novel immunocompetent system which allows us to study these interactions in a robust and reproducible manner. To this end, we created a Tg mouse strain in which all T-cells express a murinized EGFRvIII-CAR. T-cells derived from these mice demonstrated consistent CAR expression and EGFRvIII-specific cytotoxicity while traditional transduction with a CAR vector showed batch-to-batch variability. The syngeneic system also gave us the opportunity to evaluate a combination regimen with blockade of myeloid-derived suppressor cells. The Tg-CART mice represent a novel system for robust, and reproducible preclinical investigations.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Cheng-Hsiang Kuo ◽  
Po-Ku Chen ◽  
Bi-Ing Chang ◽  
Meng-Chen Sung ◽  
Chung-Sheng Shi ◽  
...  

AbstractLewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM—TM domain 1 (rTMD1)—in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.


Sign in / Sign up

Export Citation Format

Share Document