scholarly journals T cell regulation of polyclonal B cell responsiveness. III. Overt T helper and latent T suppressor activities from distinct subpopulations of unstimulated splenic T cells

1981 ◽  
Vol 153 (4) ◽  
pp. 844-856 ◽  
Author(s):  
MG Goodman ◽  
WO Weigle

Polyclonal activation of murine splenic B lymphocytes by lipopolysaccharide was found to be subject to regulation by helper and suppressor influences from T lymphocytes. In the normal adult spleen, only helper influences were exercised over polyclonal B cell activation; this influence is a property of Lyt-l(+)23(-) slowly sedimenting T cells. Suppressive influence evidently is latent, for it exists at such a low level (or the cells are so few in number) that its effects are difficult to detect. Suppressor T cell function may be evoked by culturing spleen cells at high ratios of T:B cells, by activating splenic T cells with concanavalin A, or by sonicating unstimulated splenic T cells to liberate a suppressive potential that is not expressed by these unstimulated cells when intact. The soluble fraction of resident splenic T cell sonicates exerts both helper and suppressor regulatory influences. The soluble helper activity is derived from Lyt-l(+)23(-) slowly sedimenting T cells, whereas suppressor activity is generated from a distinct subpopulation of Lyt-l(-)23(+) rapidly sedimenting T cells. The thymus contains cells capable only of helping but not of suppressing polyclonal activation of splenic B cells. Helper and suppressor activities contained in splenic T cell sonicates were separated by gel chromatography; the suppressive activity was found to elute with a molecular weight between 68,000 and 84,000 and the helper activity eluted with a molecular weight between 15,000 and 23,000. The data indicate that helper and suppressor activities are distinct molecular entities derived from distinct splenic T lymphocyte subpopulations. The possibility that these molecules are precursors to or components of antigen- specific or nonspecific helper and suppressor factors described in the literature is discussed.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3935-3935 ◽  
Author(s):  
Tamar Katz ◽  
Dina Stroopinsky ◽  
Jacob M. Rowe ◽  
Irit Avivi

Abstract Abstract 3935 Rituximab, a chimeric anti-C20 monoclonal antibody, has been extensively used over the last decade for the therapy of B cell malignancies. Recent clinical data suggest that rituximab may affect T cell function, increasing the risk of T cell dependent infections in heavily-treated patients. The current study was designed to investigate the effect of rituximab on T cell activation and assess T cell function following the addition of rituximab to purified T cells. The T cell activation profile, dependent on rituximab administration, was evaluated in vivo and in vitro. Peripheral blood mononuclear cells (PBMCs) generated from B-cell non-Hodgkin lymphoma (NHL) patients prior and immediately after the administration of 375 mg/m2 rituximab, were examined for the expression of inflammatory cytokines. The in vitro studies were performed by using CD25 depleted PBMCs or B cell depleted T cells (CD3+CD25-CD19-). The obtained cells were stimulated with allogeneic dendritic cells (DCs), in the absence or presence or 2 mg/ml rituximab. T cell activation was evaluated using immunophenotypic markers, cytokine profile and T cell proliferation assay. Eight NHL patients participated in the study. The level of T cells expressing inflammatory cytokines was significantly decreased following the administration of a single dose of rituximab. T cells expressing IL-2 declined from a mean level of 26.5% to 11.5% and the level of IFN- γ decreased from 22% to 4.2%. Further administration of rituximab, up to 4 weekly doses, resulted in an additional decline in the amount of inflammatory cytokine producing T cells to a level of 1.4% for IL-2 and 3.5% for IFN-g. However, repeated evaluation, performed at 4 months after completing rituximab, showed restoration of the inflammatory population. In accord with this inhibitory effect, in vitro stimulation of T cells with allogeneic DCs, in the presence of rituximab, resulted in a significant decrease in activation markers (CD25, GITR and CTLA-4) (Table 1). These changes were accompanied by a marked reduction in inflammatory cytokine production and proliferative capacity. Of interest, these inhibitory effects were also obtained whilst using B cell depleted T cells (CD3+CD25-CD19-). In conclusion, rituximab administration results in a transient T cell inactivation, demonstrated through the reduction in inflammatory cytokine production and T cell proliferation capacity. This effect appears to be non-B cell dependent, being obtained in the absence of B cell in the culture, and may account for clinical observations in ameliorating T-cell dependent disorders, such as graft-versus-host disease. Table 1. Activation profile depending on rituximab (in vitro) Without rituximab With rituximab *Activation marker (%) CD25 27 9 GITR 15.6 4.7 CTLA4 17.7 7 *Cytokines expression (%) IL-2 22 2 IL12 16 4 IFN-gamma 21 1.8 T cells proliferation (O.D.) DC stimulation 1.528 0.580 CMV stimulation 1.563 0.570 anti CD3/CD28 stimulation 0.705 0.407 * Gated out of lymphocytes Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 200 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Christopher M. Snyder ◽  
Katja Aviszus ◽  
Ryan A. Heiser ◽  
Daniel R. Tonkin ◽  
Amanda M. Guth ◽  
...  

Antibody diversity creates an immunoregulatory challenge for T cells that must cooperate with B cells, yet discriminate between self and nonself. To examine the consequences of T cell reactions to the B cell receptor (BCR), we generated a transgenic (Tg) line of mice expressing a T cell receptor (TCR) specific for a κ variable region peptide in monoclonal antibody (mAb) 36-71. The κ epitope was originally generated by a pair of somatic mutations that arose naturally during an immune response. By crossing this TCR Tg mouse with mice expressing the κ chain of mAb 36-71, we found that κ-specific T cells were centrally deleted in thymi of progeny that inherited the κTg. Maternally derived κTg antibody also induced central deletion. In marked contrast, adoptive transfer of TCR Tg T cells into κTg recipients resulted in T and B cell activation, lymphadenopathy, splenomegaly, and the production of IgG antichromatin antibodies by day 14. In most recipients, autoantibody levels increased with time, Tg T cells persisted for months, and a state of lupus nephritis developed. Despite this, Tg T cells appeared to be tolerant as assessed by severely diminished proliferative responses to the Vκ peptide. These results reveal the importance of attaining central and peripheral T cell tolerance to BCR V regions. They suggest that nondeletional forms of T tolerance in BCR-reactive T cells may be insufficient to preclude helper activity for chromatin-reactive B cells.


1978 ◽  
Vol 147 (2) ◽  
pp. 554-570 ◽  
Author(s):  
J E Swierkosz ◽  
K Rock ◽  
P Marrack ◽  
J W Kappler

A method was established for isolating antigen-specific murine helper T cells by selective binding to antigen-pulsed macrophage (Mphi) monolayers. Sheep erythrocyte (SRBC)-primed T cells, which remained strongly adherent to SRBC-pulsed syngeneic Mphi after 20 h in culture, were markedly enriched for helper activity when tested in the in vitro antitrinitrophenol (TNP) response to TNP-SRBC. Successful binding and enrichment occurred only if the Mphi were pulsed with the specific antigen to which the T-cell donors had been primed. The genetic control governing helper function in this system was then examined by using primed F1 T cells isolated on Mphi monolayers from congenic strains bearing parental H-2 haplotypes. SRBC-primed BDF1 (H-2b X H-2d) T cells, which bound to SRBC-pulsed H-2d Mphi, subsequently functioned as helper cells in cultures containing H-2d B cells and Mphi, but not in those containing H-2b B cells and Mphi. They remained unable to collaborate with B cells of the H-2B haplotype even in the presence of additional H-2d Mphi, indicating that H-2 restriction occurs at least at the level of the B cell. Similary, primed BDF1 T cells isolated on H-2b Mphi cooperated preferentially with H-2b B cells and Mphi. In both cases, the haplotype preference of the T cell was not due to alloreactive suppressor activity. These results suggest that primed F1 mice contain individual populations of helper T cells, each of which recognize antigen in association with a parental H-2 gene product(s) expressed during both Mphi-T cell and T cell-B cell interactions.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


1980 ◽  
Vol 152 (5) ◽  
pp. 1274-1288 ◽  
Author(s):  
P Marrack ◽  
J W Kappler

The mode of action by bystander helper T cells was investigated by priming (responder X nonresponder) (B6A)F1 T cells with poly-L-(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys [(TG)-A--L] and titrating the ability of these cells to stimulate an anti-sheep red blood cell (SRBC) response of parental B cells and macrophages in the presence of (TG)-A--L. Under limiting T cell conditions, and in the presence of (TG)-A--L, (TG)-A--L-responsive T cells were able to drive anti-SRBC responses of high-responder C57BL/10.SgSn (B10) B cells and macrophages (M0), but not of low-responder (B10.A) B cells and M0. Surprisingly, the (TG)-A--L-driven anti-SRBC response of B10.A B cells was not restored by addition of high-responder acessory cells, in the form of (B6A)F1 peritoneal or irradiated T cell-depleted spleen cells, or in the form of B10 nonirradiated T cell-depleted spleen cells. These results suggested that (TG)-A--L-specific Ir genes expressed by B cells controlled the ability of these cells to be induced to respond to SRBC by (TG)-A--L-responding T cells, implying that direct contact between the SRBC-binding B cell precursor and the (TG)-A--L-responsive helper T cells was required. Analogous results were obtained for keyhold limpet hemocyanin (KLH)-driven bystander help using KLH-primed F1 T cells restricted to interact with cells on only one of the parental haplotypes by maturing them in parental bone marrow chimeras. It was hypothesized that bystander help was mediated by nonspecific uptake of antigen [(TG)-A--L or KLH] by SRBC-specific b cells and subsequent display of the antigen on the B cell surface in association with Ir of I-region gene products, in a fashion similar to the M0, where it was then recognized by helper T cells. Such an explanation was supported by the observation that high concentrations of antigen were required to elicit bystander help. This hypothesis raises the possibility of B cell processing of antigen bound to its immunoglobulin receptor and subsequent presentation of antigen to helper T cells.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


2017 ◽  
Vol 50 (4) ◽  
pp. 1700833 ◽  
Author(s):  
Carolina Cubillos-Zapata ◽  
Jose Avendaño-Ortiz ◽  
Enrique Hernandez-Jimenez ◽  
Victor Toledano ◽  
Jose Casas-Martin ◽  
...  

Obstructive sleep apnoea (OSA) is associated with higher cancer incidence, tumour aggressiveness and cancer mortality, as well as greater severity of infections, which have been attributed to an immune deregulation. We studied the expression of programmed cell death (PD)-1 receptor and its ligand (PD-L1) on immune cells from patients with OSA, and its consequences on immune-suppressing activity. We report that PD-L1 was overexpressed on monocytes and PD-1 was overexpressed on CD8+ T-cells in a severity-dependent manner. PD-L1 and PD-1 overexpression were induced in both the human in vitro and murine models of intermittent hypoxia, as well as by hypoxia-inducible factor-1α transfection. PD-L1/PD-1 crosstalk suppressed T-cell proliferation and activation of autologous T-lymphocytes and impaired the cytotoxic activity of CD8+ T-cells. In addition, monocytes from patients with OSA exhibited high levels of retinoic acid related orphan receptor, which might explain the differentiation of myeloid-derived suppressor cells. Intermittent hypoxia upregulated the PD-L1/PD-1 crosstalk in patients with OSA, resulting in a reduction in CD8+ T-cell activation and cytotoxicity, providing biological plausibility to the increased incidence and aggressiveness of cancer and the higher risk of infections described in these patients.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1245-1254 ◽  
Author(s):  
N Chirmule ◽  
N Oyaizu ◽  
VS Kalyanaraman ◽  
S Pahwa

Abstract Despite the occurrence of hypergammaglobulinemia in human immunodeficiency virus (HIV) infection, specific antibody production and in vitro B-cell differentiation responses are frequently impaired. In this study, we have examined the effects of HIV envelope glycoprotein gp120 on T-helper cell function for B cells. In the culture system used, B-cell functional responses were dependent on T-B- cell contact, since separation of T and B cells in double chambers by Transwell membranes rendered the B cells unresponsive in assays of antigen-induced B-cell proliferation and differentiation. Cytokines secreted by T cells were also essential, since anti-CD3 monoclonal antibody (mAb)-activated, paraformaldehyde-fixed T-cell clones failed to induce B-cell proliferation and differentiation. Pretreatment of the CD4+ antigen-specific T cells with gp120 was found to impair their ability to help autologous B cells, as determined by B-cell proliferation, polyclonal IgG secretion, and antigen-specific IgG secretion. The gp120-induced inhibition was specific in that it was blocked by soluble CD4. Furthermore, only fractionated small B cells (which are T-cell-dependent in their function) manifested impaired responses when cultured with gp120-treated T cells. Antigen-induced interleukin (IL)-2 and IL-4, but not IL-6, secretion were markedly reduced in gp120-treated T-cell clones. Addition of exogenous cytokines failed to compensate for defective helper function of gp120-treated T cells. The findings in this study indicate that gp120 impairs helper functions of CD4+ T cells by interfering with T-B-cell contact- dependent interaction; the inhibitory effects of soluble envelope proteins of HIV may contribute to the immunopathogenesis of the HIV- associated disease manifestations.


1989 ◽  
Vol 170 (5) ◽  
pp. 1477-1493 ◽  
Author(s):  
R H DeKruyff ◽  
T Turner ◽  
J S Abrams ◽  
M A Palladino ◽  
D T Umetsu

We have analyzed in detail the precise requirements for the induction of human IgE synthesis using several experimental approaches with purified B cells and well-characterized alloantigen-specific CD4+ T cell clones expressing different profiles of lymphokine secretion. Using these clones under cognate conditions in which the B cells expressed alloantigens recognized by the cloned T cells, we have confirmed that IL-4 is required for the induction of IgE synthesis, but we have clearly demonstrated that IL-4 by itself is not sufficient. With several cloned CD4+ T cell lines, including an IL-4-producing clone that could not induce IgE synthesis, and cloned T cells pretreated with cyclosporin A to inhibit lymphokine synthesis, we showed that Th cell-B cell interactions are necessary for IgE synthesis, and that low molecular weight B cell growth factor (LMW-BCGF) and IL-4, in combination, are lymphokines of major importance in the induction of IgE synthesis. Together our results indicate that optimal induction of an IgE-specific response requires the exposure of B cells to a particular complex of signals that include (a) a signal(s) involving Th-B cell interaction that primes B cells to receive additional signals from soluble lymphokines, (b) a specific B cell proliferative signal provided by LMW-BCGF, and (c) a specific B cell differentiation signal provided by IL-4.


Sign in / Sign up

Export Citation Format

Share Document