scholarly journals T lymphocyte recognition of peptide antigens: evidence favoring the formation of neoantigenic determinants.

1982 ◽  
Vol 156 (1) ◽  
pp. 289-293 ◽  
Author(s):  
D W Thomas ◽  
M D Hoffman ◽  
G D Wilner

To more precisely define the nature of exogenous antigenic determinants recognized by T cells, the response to fibrinopeptide fragment B beta 7-14 and a peptide of the inverted amino acid sequence of B beta 7-14 was examined. Strain 2 guinea pig T cells immunized with B beta 7-14 showed in vitro proliferative responses with B beta 7-14, but failed to respond to the inverted B beta 7-14 peptide. Moreover, the inverted B beta 7-14 peptide was nonimmunogenic and failed to prime strain 2 T cells for responses to native or inverted B beta 7-14. These results suggest that T cell recognition of peptide antigens involves more than simple interactions with amino acid side chains and that the ordering of the amino acids within the peptide is critical. One interpretation of these results is that T cells exhibit polarity in reading of antigenic determinants and peptides become associated with self in some fashion to form a neoantigenic determinant. To test this possibility, a Gly residue was added to the carboxyl end of B beta 7-14 (B beta 7-15), which is the likely site of attachment to self. It was found that strain 13 guinea pigs, which are totally unresponsive to B beta 7-14, produced T cell responses to B beta 7-15. This observation is consistent with the interpretation that Gly spaces the B beta 7-14 away from self to form an antigenic determinant complementary to strain 13 T cell antigen recognition structures. These results are discussed with respect to several mechanisms for immune response gene control of T cell responses.

Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A143-A143
Author(s):  
Dharmeshkumar Patel ◽  
Dharmeshkumar Patel ◽  
Angshumala Goswami ◽  
Vitaly Balan ◽  
Zhifen Yang ◽  
...  

BackgroundThe application of CRISPR-Cas9 for personalized medicine is potentially revolutionary for the treatment of several diseases including cancer. However, the bacterial origin of the Cas9 protein raises concerns about immunogenicity. Recent ELISA-based assays detected antibodies against Cas9 from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in 5–10% of sera from 343 normal healthy individuals.1,2 SpCas9-specific memory CD8 T cell responses were not demonstrated in those individuals. To date, there are no conclusive studies assessing whether CRISPR-Cas9-modified CAR-T could raise CD8 T cell-mediated immunogenicity in humans. Refuge CAR-T cell platform employs an inducible, non-gene editing, nuclease deactivated Cas9 (dCas9) to modulate gene expression in response to external stimuli such as antigen-dependent CAR signaling to suppress PD-1 expression.MethodsIn the present study, we analyzed two putative HLA-A*02:01 and two HLA-B*07:02-associated SpCas9 T cell epitopes. The candidate epitopes were derived from a prediction algorithm that incorporates T cell receptor contact residue hydrophobicity and HLA binding affinity. We engaged in-vitro sensitization (IVS) assay to identify immunogenic potential of dCas9 peptides.ResultsAutologous IVS assay of T cells in two healthy donor PBMCs identified CD8-T cell responses after two rounds of stimulation against only one HLA-A*02:01-associated Cas9 peptide (sequence NLIALSLGL) P1– while the other candidate epitopes did not elicit any response. Dextramer analysis demonstrated that 15% of CD8+ T cells were specific for P1 and ~11% of CD8+ cells produced INFG upon challenge with P1-loaded T2 cells.ConclusionsOur in-vitro sensitization assay was able to demonstrate that dCas9 epitope P1 is immunogenic and may elicit adaptive immune response against gene edited CAR-T cells. Endogenous processing and presentation of P1 and other putative epitopes by Refuge CAR-T cells are currently being analyzed.AcknowledgementsRefuge Biotechnologies Inc. Menlo Park, California, 94025Trial RegistrationN/AEthics ApprovalN/AConsentN/AReferencesSimhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE. Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol Ther Methods Clin Dev 2018;10:105–112. Published 2018 Jun 15. doi:10.1016/j.omtm.2018.06.006Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun2019;10(1):1842. Published 2019 Apr 23. doi:10.1038/s41467-019-09693-x


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 318-318 ◽  
Author(s):  
Lequn Li ◽  
Hui Wang ◽  
Vassiliki A. Boussiotis

Abstract Cell cycle re-entry of quiescent T lymphocytes is required for generation of productive T cell responses. Cyclin-dependent kinases (cdk), particularly cdk2, have an essential role in cell cycle re-entry. Cdk2 promotes phosphorylation of Rb and related pocket proteins thereby reversing their ability to sequester E2F transcription factors. Besides Rb, cdk2 phosphorylates Smad2 and Smad3. Smad3 inhibits cell cycle progression from G1 to S phase, and impaired phosphorylation on the cdk-mediated sites renders it more effective in executing this function. In contrast, cdk-mediated phosphorylation of Smad3 reduces Smad3 transcriptional activity and antiproliferative function. Recently, we determined that induction of T cell tolerance resulted in impaired cdk2 activity, leading to reduced levels of Smad3 phosphorylation on cdk-specific sites and increased Smad3 antiproliferative function due to upregulation of p15. We hypothesized that pharmacologic inhibition of cdk2 during antigen-mediated T cell stimulation might provide an effective strategy to control T cell expansion and induce tolerance. (R)-roscovitine (CYC202) is a potent inhibitor of cdk2-cyclin E, which in higher concentrations also inhibits other cdk-cyclin complexes including cdk7, cdk9 and cdk5. It is currently in clinical trials as anticancer drug and recently was shown to induce long-lasting arrest of murine polycystic kidney disease. We examined the effect of roscovitine on T cell responses in vitro and in vivo. We stimulated C57BL/6 T cells with anti-CD3-plus-anti-CD28 mAbs, DO11.10 TCR-transgenic T cells with OVA peptide or C57BL/6 T cells with MHC disparate Balb/c splenocytes. Addition of roscovitine in these cultures resulted in blockade of cell proliferation without induction of apoptosis. Biochemical analysis revealed that roscovitine prevented phosphorylation of cdk2, downregulation of p27, phosphorylation of Rb and synthesis of cyclin A, suggesting an effective G1/S cell cycle block. To determine whether roscovitine could also inhibit clonal expansion of activated T cells in vivo, we employed a mouse model of GvHD. Recipient (C57BL/6 x DBA/2) F1 mice were lethally irradiated and were subsequently infused with bone marrow cells and splenocytes, as source of allogeneic T cells, from parental C57BL/6 donors. Roscovitine or vehicle-control was given at the time of allogeneic BMT and on a trice-weekly basis thereafter for a total of three weeks. Administration of roscovitine protected against acute GvHD resulting in a median survival of 49 days in the roscovitine-treated group compared to 24 days in the control group (p=0.005), and significantly less weight loss. Importantly, roscovitine treatment had no adverse effects on engraftment, resulting in full donor chimerism in the treated mice. To examine whether tolerance had been induced by in vivo treatment with roscovitine, we examined in vitro rechallenge responses. While control C57BL/6 T cells exhibited robust responses when stimulated with (C57BL/6 x DBA/2) F1 splenocytes, responses of T cells isolated from roscovitine-treated recipients against (C57BL/6 x DBA/2) F1 splenocytes were abrogated. These results indicate that roscovitine has direct effects on preventing TCR-mediated clonal expansion in vitro and in vivo and may provide a novel therapeutic approach for control of GvHD.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 377-377 ◽  
Author(s):  
Daniel J Hui ◽  
Gary C Pien ◽  
Etiena Basner-Tschakarjan ◽  
Federico Mingozzi ◽  
Jonathan D Finn ◽  
...  

Abstract Abstract 377 Hemophilia B represents a promising model for the development of adeno-associated viral (AAV) vectors-based gene therapeutics. In the first clinical trial for AAV serotype 2 mediated gene transfer of Factor IX (F.IX) to the liver of severe hemophilia B subjects, transgene expression was short-lived with a gradual decline of F.IX levels. The loss of transgene expression was accompanied by a transient transaminitis, which we hypothesized to be the result of the reactivation of a pool of capsid-specific memory CD8+ T cells originated from a previous exposure to wild-type AAV. These results were unanticipated since previous work in small and large animal models showed that AAV administration is uneventful, allowing prolonged expression of F.IX transgene at therapeutic levels. We developed an in vitro cytotoxicity assay using a human hepatocyte cell line expressing HLA-B*0702, a common MHC class I allele for which the AAV capsid immunodominant epitope VPQYGYLTL was identified. Using this model, we demonstrated that HLA-matched AAV-specific effector CD8+ T cells were able to lyse target hepatocytes transduced with AAV-2. We now use this in vitro model of CTL killing of AAV-transduced hepatocytes to demonstrate the efficacy of a novel strategy to circumvent undesirable immune response through the engagement of regulatory T cells. A recently characterized MHC Class II-restricted T cell epitope (Tregitope) in the Fc fragment of IgG has been shown to induce regulatory T cells in vitro and in vivo (Blood, 2008; 112: 3303-3311). AAV-specific HLA-B*0702 effector cells expanded in the presence of a human Tregitope peptide resulted in 79% to 89% inhibition of cytotoxic activity against peptide-pulsed and AAV-transduced target cells, respectively. These results were confirmed using PBMCs from 5 different donors. A similar degree of inhibition of CTL activity was observed for the HLA allele A*0101, which binds to the AAV-derived epitope SADNNNSEY; co-culture of effector cells with the Tregitope inhibited CTL-mediated killing by 60%. Interestingly, the same Tregitope efficiently mediated suppression of CTL activity in subjects carrying different HLA alleles, indicating a high level of promiscuity of Tregitope binding. Staining for the regulatory T cell markers CD4, CD25, and FoxP3 supported the hypothesis that Tregitopes suppress T cell responses by expanding regulatory T cells; 62.2% of the CD4+ population stained positive for CD25 and FoxP3 in PBMCs expanded against AAV epitopes in the presence of Tregitope, compared with PBMCs expanded against an AAV epitope alone (3.63%), or against an AAV epitope and an irrelevant control peptide (1.94%). Polyfunctional analysis for markers for T cell activation showed that CD8+ T cells incubated in the presence of Tregitope had an approximately 5-fold decrease in production of IL-2 and IFN-γand a 2-fold reduction in TNF-α production, indicating levels of activation close to naïve CD8+ T cells. We further characterized the mechanism of action of Tregitopes by showing that Tregitopes are required at the time of CD8+ T cell priming, as CTL activity of AAV-expanded CD8+ T cells against transduced hepatocytes was not inhibited by the CD4+ T cell fraction of PBMC expanded separately in vitro with Tregitopes only. We conclude that the use of Tregitopes represents a promising strategy for antigen-specific, Treg-mediated modulation of capsid-specific T cell responses. Disclosures: Martin: EpiVax: Employment. De Groot:EpiVax, Inc.: Employment, Equity Ownership.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 162-162
Author(s):  
Emmanuel S. Antonarakis ◽  
David I. Quinn ◽  
Adam S. Kibel ◽  
Daniel Peter Petrylak ◽  
Tuyen Vu ◽  
...  

162 Background: Sip-T is an FDA-approved immunotherapy for patients (pts) with asymptomatic or minimally symptomatic metastatic CRPC. Sip-T is manufactured from autologous peripheral blood mononuclear cells cultured with the immunogen PA2024, a fusion antigen of prostatic acid phosphatase (PAP) conjugated to granulocyte macrophage colony-stimulating factor. After sip-T, antibody and T cell responses to PA2024 and/or PAP correlate with improved survival. To further elucidate the mechanism of sip-T–induced immune responses, we evaluated the proliferative and lytic ability of PA2024- and PAP-specific CD8+ T cells. Methods: Mononuclear blood cells were labeled with the membrane dye carboxyfluorescein succinimidyl ester (CFSE) and cultured with PA2024 or PAP. In vitro proliferative and lytic CD8+ (cytotoxic T lymphocyte [CTL]) T cell responses to these antigens were evaluated by flow cytometry. For proliferation, progressive dilution of CFSE was measured. For CTL activity, the loss of intracellular granzyme B (GzB), indicating exocytosis of this apoptosis-mediating enzyme, was assessed. Samples were from 2 sip-T clinical trials STAND (NCT01431391) and STRIDE (NCT01981122), hormone-sensitive and CRPC pts, respectively. Results: Six wk after sip-T administration, CD8+ PAP- and PA2024-specific responses were observed (n=14 pts assessed). The magnitude of PA2024-specific CD8+ proliferative responses was greater than that for PAP-specific responses. CD8+ T cells from a subset of pts who exhibited PA2024- and/or PAP-specific proliferative responses were assessed for lytic ability. After in vitro antigen stimulation, CTL activity in all evaluated samples (n=14, PA2024; n=13, PAP) was demonstrated by a significant decrease (p<0.05) in intracellular GzB relative to a no-antigen control. Conclusions: Sip-T induced CD8+ CTL proliferation against the target antigens PAP and PA2024. Moreover, antigen-specific CTL activity provides the first direct evidence that sip-T can induce tumor cell lysis. These antigen-specific CD8+ lytic abilities were observed within 6 wk following sip-T, suggesting rapidly generated immune responses. Clinical trial information: NCT01431391; NCT01981122.


2004 ◽  
Vol 72 (12) ◽  
pp. 7240-7246 ◽  
Author(s):  
Marion Pepper ◽  
Florence Dzierszinski ◽  
Amy Crawford ◽  
Christopher A. Hunter ◽  
David Roos

ABSTRACT The study of the immune response to Toxoplasma gondii has provided numerous insights into the role of T cells in resistance to intracellular infections. However, the complexity of this eukaryote pathogen has made it difficult to characterize immunodominant epitopes that would allow the identification of T cells with a known specificity for parasite antigens. As a consequence, analysis of T-cell responses to T. gondii has been based on characterization of the percentage of T cells that express an activated phenotype during infection and on the ability of these cells to produce cytokines in response to complex mixtures of parasite antigens. In order to study specific CD4+ T cells responses to T. gondii, recombinant parasites that express a truncated ovalbumin (OVA) protein, in either a cytosolic or a secreted form, were engineered. In vitro and in vivo studies reveal that transgenic parasites expressing secreted OVA are able to stimulate T-cell receptor-transgenic OVA-specific CD4+ T cells to proliferate, express an activated phenotype, and produce gamma interferon (IFN-γ). Furthermore, the adoptive transfer of OVA-specific T cells into IFN-γ−/− mice provided enhanced protection against infection with the OVA-transgenic (but not parental) parasites. Together, these studies establish the utility of this transgenic system to study CD4+-T-cell responses during toxoplasmosis.


2021 ◽  
Author(s):  
◽  
Dianne Sika-Paotonu

<p>Tumours can be eradicated by T cells that recognise unique tumour-associated antigens. These T cells are initially stimulated by dendritic cells (DCs) that have acquired antigens from tumour tissue. Vaccination strategies that increase the frequencies of tumour-specific T cells by enhancing the activity of DCs are being evaluated in the clinic as novel cancer therapies. Our hypothesis is that existing DC-based vaccination strategies can be improved by stimulating toll-like receptor (TLR) signalling in the DCs, and also by encouraging interactions with iNKT cells, as these two activities are known to enhance DC function. It was also hypothesised that superior T cell responses could be induced by combining these two activities together. We used the TLR 4 agonist monophosphoryl lipid A (MPL) alone and in combination with other TLR agonists to achieve effective activation of bone marrow-derived DCs (BM-DCs) cultured in-vitro, which was characterised by upregulated expression of maturation markers on the cell surface, and enhanced release of pro-inflammatory cytokines. Some TLR agonist combinations provided significantly enhanced activities in this regard, notably the combination of MPL with either the TLR 2 agonist Pam3Cys, or the TLR 7/8 agonist Resiquimod. Although in-vitro activated BM-DCs were unable to induce stronger antigen-specific CD8+ T cell responses after intravenous injection when compared to BMDCs without TLR stimulation, enhanced CD8+ T cell responses were achieved in-vivo with the co-administration of TLR ligands, implying that TLR stimulation needed to act on cells of the host. Further studies identified the langerin-expressing CD8ɑ+ splenic DC subset in the spleen as recipients of antigen that was transferred from injected cells, and that these recipients were participants in the cross-presentation and T cell priming activities driving the CD8+ T cell response after vaccination. Antigen-loaded BM-DCs carrying the NKT cell ligand ɑ-galactosylceramide (ɑ-GalCer) were found to consistently increase antigen-specific CD8+ T cell responses in-vivo, and also cytotoxic responses as seen in cytotoxic killing assays. Again, langerin-expressing CD8ɑ+ splenic DCs were shown to be involved in this response by acquiring antigen and ɑ-GalCer from the injected vaccine BM-DCs. Finally, it was possible to achieve even greater CD8+ T cell responses in-vivo by injecting BM-DCs carrying antigen and ɑ-GalCer, together with timely co-administration of the TLR agonist. These results suggest a reassessment of the activities of DC-based vaccines to include the important role of “courier” to DCs already resident in the host that can be exploited to improve vaccination outcomes.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Christina P. Martins ◽  
Lee A. New ◽  
Erin C. O’Connor ◽  
Dana M. Previte ◽  
Kasey R. Cargill ◽  
...  

In Type 1 Diabetes (T1D), CD4+ T cells initiate autoimmune attack of pancreatic islet β cells. Importantly, bioenergetic programs dictate T cell function, with specific pathways required for progression through the T cell lifecycle. During activation, CD4+ T cells undergo metabolic reprogramming to the less efficient aerobic glycolysis, similarly to highly proliferative cancer cells. In an effort to limit tumor growth in cancer, use of glycolytic inhibitors have been successfully employed in preclinical and clinical studies. This strategy has also been utilized to suppress T cell responses in autoimmune diseases like Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Rheumatoid Arthritis (RA). However, modulating T cell metabolism in the context of T1D has remained an understudied therapeutic opportunity. In this study, we utilized the small molecule PFK15, a competitive inhibitor of the rate limiting glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3). Our results confirmed PFK15 inhibited glycolysis utilization by diabetogenic CD4+ T cells and reduced T cell responses to β cell antigen in vitro. In an adoptive transfer model of T1D, PFK15 treatment delayed diabetes onset, with 57% of animals remaining euglycemic at the end of the study period. Protection was due to induction of a hyporesponsive T cell phenotype, characterized by increased and sustained expression of the checkpoint molecules PD-1 and LAG-3 and downstream functional and metabolic exhaustion. Glycolysis inhibition terminally exhausted diabetogenic CD4+ T cells, which was irreversible through restimulation or checkpoint blockade in vitro and in vivo. In sum, our results demonstrate a novel therapeutic strategy to control aberrant T cell responses by exploiting the metabolic reprogramming of these cells during T1D. Moreover, the data presented here highlight a key role for nutrient availability in fueling T cell function and has implications in our understanding of T cell biology in chronic infection, cancer, and autoimmunity.


2010 ◽  
Vol 84 (11) ◽  
pp. 5540-5549 ◽  
Author(s):  
B. Julg ◽  
K. L. Williams ◽  
S. Reddy ◽  
K. Bishop ◽  
Y. Qi ◽  
...  

ABSTRACT Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function.


2012 ◽  
Vol 81 (1) ◽  
pp. 311-316 ◽  
Author(s):  
Daisuke Morita ◽  
Yuki Hattori ◽  
Takashi Nakamura ◽  
Tatsuhiko Igarashi ◽  
Hideyoshi Harashima ◽  
...  

Human CD1b molecules contain a maze of hydrophobic pockets and a tunnel capable of accommodating the unusually long, branched acyl chain of mycolic acids, an essential fatty acid component of the cell wall of mycobacteria. It has been accepted that CD1b-bound mycolic acids constitute a scaffold for mycolate-containing (glyco)lipids stimulating CD1b-restricted T cells. Remarkable homology in amino acid sequence is observed between human and monkey CD1b molecules, and indeed, monkey CD1b molecules are able to bind glucose monomycolate (GMM), a glucosylated species of mycolic acids, and present it to specific human T cellsin vitro. Nevertheless, we found, unexpectedly, thatMycobacterium bovisbacillus Calmette-Guerin (BCG)-vaccinated monkeys exhibited GMM-specific T cell responses that were restricted by CD1c rather than CD1b molecules. GMM-specific, CD1c-restricted T cells were detected in the circulation of all 4 rhesus macaque monkeys tested after but not before vaccination with BCG. The circulating GMM-specific T cells were detected broadly in both CD4+and CD8+cell populations, and upon antigenic stimulation, a majority of the GMM-specific T cells produced both gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), two major host protective cytokines functioning against infection with mycobacteria. Furthermore, the GMM-specific T cells were able to extravasate and approach the site of infection where CD1c+cells accumulated. These observations indicate a previously inconceivable role for primate CD1c molecules in eliciting T cell responses to mycolate-containing antigens.


Sign in / Sign up

Export Citation Format

Share Document