scholarly journals Fibronectin tetrapeptide is target for syphilis spirochete cytadherence.

1985 ◽  
Vol 162 (5) ◽  
pp. 1715-1719 ◽  
Author(s):  
D D Thomas ◽  
J B Baseman ◽  
J F Alderete

The syphilis bacterium, Treponema pallidum, parasitizes host cells through recognition of fibronectin (Fn) on cell surfaces. The active site of the Fn molecule has been identified as a four-amino acid sequence, arg-gly-asp-ser (RGDS), located on each monomer of the cell-binding domain. The synthetic heptapeptide gly-arg-gly-asp-ser-pro-cys (GRGDSPC), with the active site sequence RGDS, specifically competed with 125I-labeled cell-binding domain acquisition by T. pallidum. Additionally, the same heptapeptide with the RGDS sequence diminished treponemal attachment to HEp-2 and HT1080 cell monolayers. Related heptapeptides altered in one key amino acid within the RGDS sequence failed to inhibit Fn cell-binding domain acquisition or parasitism of host cells by T. pallidum. The data support the view that T. pallidum cytadherence of host cells is through recognition of the RGDS sequence also important for eukaryotic cell-Fn binding.

1985 ◽  
Vol 161 (3) ◽  
pp. 514-525 ◽  
Author(s):  
D D Thomas ◽  
J B Baseman ◽  
J F Alderete

The specificity of the interaction between Treponema pallidum and fibronectin was demonstrated. Treatment of host cells with only antifibronectin sera and not anticollagen or antilaminin sera, inhibited treponemal cytadsorption. Incubation of fibronectin-coated coverslips with monoclonal antibody to the cell-binding domain of fibronectin reduced treponemal attachment to the same extent as antifibronectin serum. Both iodinated fibronectin and iodinated cell-binding domain bound to T. pallidum in a saturable manner. Specificity of the T. pallidum association with the cell-binding domain was the most effective inhibitor of the binding of either radioiodinated cell-binding domain or fibronectin to T. pallidum. Scatchard analysis gave Kd on the order of 10(-7) M for both cell-binding domain and fibronectin binding to T. pallidum, consistent with the high affinity interaction of these organisms with host cell surfaces. Finally, the same level of attachment of treponemes was achieved on coverslips coated with cell-binding domain as that observed for organisms incubated with fibronectin, indicating that the cell-binding domain polypeptide is functionally identical to fibronectin in mediating T. pallidum adherence.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 722
Author(s):  
Sara Arroyo-Moreno ◽  
Máire Begley ◽  
Kornelia Dembicka ◽  
Aidan Coffey

Bacteriophage endolysins and their derivatives have strong potential as antibacterial agents considering the increasing prevalence of antibiotic resistance in common bacterial pathogens. The peptidoglycan degrading peptidase CHAPk, a truncated derivate of staphylococcal phage K endolysin (LysK), has proven efficacy in preventing and disrupting staphylococcal biofilms. Nevertheless, the concentration of CHAPk required to eliminate populations of stationary-phase cells was previously found to be four-fold higher than that for log-phase cells. Moreover, CHAPk-mediated lysis of stationary-phase cells was observed to be slower than for log-phase cultures. In the present study, we report the fusion of a 165 amino acid fragment containing CHAPk with a 136 amino acid fragment containing the cell-binding domain of the bacteriocin lysostaphin to create a chimeric enzyme designated CHAPk-SH3blys in the vector pET28a. The chimeric protein was employed in concentrations as low as 5 μg/mL, producing a reduction in turbidity in 7-day-old cultures, whereas the original CHAPk required at least 20 μg/mL to achieve this. Where 7-day old liquid cultures were used, the chimeric enzyme exhibited a 16-fold lower MIC than CHAPk. In terms of biofilm prevention, a concentration of 1 μg/mL of the chimeric enzyme was sufficient, whereas for CHAPk, 125 μg/mL was needed. Moreover, the chimeric enzyme exhibited total biofilm disruption when 5 μg/mL was employed in 4-h assays, whereas CHAPk could only partially disrupt the biofilms at this concentration. This study demonstrates that the cell-binding domain from lysostaphin can make the phage endolysin CHAPk more effective against sessile staphylococcal cells.


1991 ◽  
Vol 266 (5) ◽  
pp. 3045-3051
Author(s):  
F Kimizuka ◽  
Y Ohdate ◽  
Y Kawase ◽  
T Shimojo ◽  
Y Taguchi ◽  
...  

Langmuir ◽  
2018 ◽  
Vol 34 (33) ◽  
pp. 9847-9855 ◽  
Author(s):  
Tianjie Li ◽  
Lijing Hao ◽  
Jiangyu Li ◽  
Chang Du ◽  
Yingjun Wang

1988 ◽  
Vol 107 (5) ◽  
pp. 1835-1843 ◽  
Author(s):  
R K Kamboj ◽  
L M Wong ◽  
T Y Lam ◽  
C H Siu

At the aggregation stage of Dictyostelium discoideum development, a cell surface glycoprotein of Mr 80,000 (gp80) has been found to mediate the EDTA-resistant type of cell-cell adhesion via homophilic interaction (Siu, C.-H., A. Cho, and A. H. C. Choi. 1987. J. Cell Biol. 105:2523-2533). To investigate the structure-function relationships of gp80, we have isolated full length cDNA clones for gp80 and determined the DNA sequence. The deduced structure of gp80 showed three major domains. An amino-terminal globular domain composed of the bulk of the protein is supported by a short stalk region, which is followed by a membrane anchor at the carboxy terminus. Structural analysis suggested that the cell-binding domain of gp80 resides within the globular domain near the amino terminus. To investigate the relationship of the cell-binding activity to this region of the polypeptide, three protein A/gp80 (PA80) gene fusions were constructed using the expression vector pRIT2T. These PA80 fusion proteins were assayed for their ability to bind to aggregation stage cells. Binding of 125I-labeled fusion proteins PA80I (containing the Val123 to Ile514 fragment of gp80) and PA80II (Val123 to Ala258) was dosage dependent and could be inhibited by precoating cells with the cell cohesion-blocking mAb 80L5C4. On the other hand, there was no appreciable binding of PA80III (Ile174 to Ile514) to cells. Reassociation of cells was significantly inhibited in the presence of PA80I or PA80II. In addition, 125I-labeled PA80II exhibited homophilic interaction with immobilized PA80I, PA80II, or gp80. The results of these studies lead to the mapping of a cell-binding domain in the region between Val123 and Leu173 of gp80 and provide direct evidence that the cell-binding activity of gp80 resides in the protein moiety.


2001 ◽  
Vol 360 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Jungyean KIM ◽  
Innoc HAN ◽  
Yeonhee KIM ◽  
Seungin KIM ◽  
Eok-Soo OH

Fibronectin (FN) stimulates multiple signalling events including mitogen-activated protein kinase (MAPK) activation. During cell spreading, both the cell-binding domain and the C-terminal heparin-binding domain (HepII) of FN co-operatively regulate cytoskeleton organization. However, in comparison with the large number of studies on the functions of cell-binding domain, there is little information about the role of HepII. We therefore investigated the effect of HepII on integrin-mediated cell spreading and adhesion on FN and MAPK activation. In contrast with cells on FN substrates, rat embryo fibroblasts on FN120, which lacks HepII, were less spread, had weaker adhesion to FN and failed to form focal adhesions and actin stress fibres. Phosphotyrosine was present in the focal contacts of rat embryo fibroblasts on FN within 30min but was absent from cells on FN120. Overall, tyrosine phosphorylation was much less in cell lysates from cells on FN120, with decreased phosphorylation of focal adhesion kinase (‘pp125FAK’) on tyrosine-397, implying additional regulation of tyrosine phosphorylation by HepII. Nevertheless, adhesion-mediated MAPK activity was similar in cells on FN and on FN120. Furthermore, cells spread on FN and on FN120 substrates showed similar MAPK activation in response to treatment with epidermal growth factor and with platelet-derived growth factor. Consistently, overexpression of syndecan-4, which binds to HepII, enhanced cell spreading and adhesion on FN but did not affect integrin-mediated MAPK activation. We therefore conclude that both HepII and syndecan-4 regulate integrin-mediated cell spreading but not MAPK activation.


Sign in / Sign up

Export Citation Format

Share Document