scholarly journals Molecules and structures involved in the adhesion of natural killer cells to vascular endothelium.

1991 ◽  
Vol 173 (2) ◽  
pp. 439-448 ◽  
Author(s):  
P Allavena ◽  
C Paganin ◽  
I Martin-Padura ◽  
G Peri ◽  
M Gaboli ◽  
...  

The present study was designed to define molecules and structures involved in the interaction of natural killer (NK) cells with the vascular endothelium in vitro. Resting and interleukin 2 (IL-2)-activated NK cells were studied for their capacity to adhere to resting and IL-1-treated human umbilical vein endothelial cells (EC). In the absence of stimuli, NK cells showed appreciable adhesion to EC, with levels of binding intermediate between polymorphs and monocytes. The binding ability was increased by pretreatment of NK cells with IL-2. Using the appropriate monoclonal antibody, the beta 2 leukocyte integrin CD18/CD11a was identified as the major adhesion pathway of NK cells to unstimulated EC. Activation of EC with IL-1 increased the binding of NK cells. In addition to the CD18-CD11a/intercellular adhesion molecule pathway, the interaction of resting or IL-2-activated NK cells to IL-1-activated EC involved the VLA-4 (alpha 4 beta 1)-vascular cell adhesion molecule 1 receptor/counter-receptor pair. No evidence for appreciable involvement of endothelial-leukocyte adhesion molecule was obtained. Often, NK cells interacted either with the culture substrate or with the EC surface via dot-shaped adhesion structures (podosomes) protruding from the ventral surface and consisting of a core of F-actin surrounded by a ring of vinculin and talin. The identification of molecules and microanatomical structures involved in the interaction of NK cells with EC may provide a better understanding of the regulation of NK cell recruitment from blood, their extravasation, and their migration to tissues.

Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 841-846 ◽  
Author(s):  
MR Silva ◽  
R Hoffman ◽  
EF Srour ◽  
JL Ascensao

Abstract Human natural killer (NK) cells comprise 10% to 15% of peripheral blood mononuclear cells and have an important role in immune responses against tumors, viral infections, and graft rejection. NK cells originate in bone marrow (BM), but their progenitors and lineage development have not been completely characterized. We studied the generation of NK cells from purified CD34+HLADR- and CD34+HLADR+ BM progenitors and the influence of various cytokines on their production. We show that CD3-CD56+ cytotoxic NK cells can develop from both progenitors populations when interleukin-2 (IL-2) is present in an in vitro suspension culture system containing IL-1 alpha and stem cell factor. Up to 83.8% and 98.6% CD3-CD56+ cells were detected in CD34+HLADR- and CD34+DR+ cultures, respectively, after 5 weeks of culture; significant numbers of NK cells were first detected after 2 weeks. Cytotoxic activity paralleled NK cell numbers; up to 70% specific lysis at an effector:target ratio of 10:1 was observed at 5 weeks. IL-7 also triggered development of CD3-CD56+ cells from these immature progenitors (up to 24% and 55% appeared in CD34+HLADR- and CD34+HLADR+ cultures, respectively). Our data suggest that BM stromas are not necessary for NK cell development and that IL-2 remains essential for this lineage development and differentiation.


2008 ◽  
Vol 89 (3) ◽  
pp. 751-759 ◽  
Author(s):  
April Keim Parker ◽  
Wayne M. Yokoyama ◽  
John A. Corbett ◽  
Nanhai Chen ◽  
R. Mark L. Buller

Natural killer (NK) cells are known for their ability to lyse tumour cell targets. Studies of infections by a number of viruses, including poxviruses and herpesviruses, have demonstrated that NK cells are vital for recovery from these infections. Little is known of the ability of viruses to infect and complete a productive replication cycle within NK cells. Even less is known concerning the effect of infection on NK cell biology. This study investigated the ability of ectromelia virus (ECTV) to infect NK cells in vitro and in vivo. Following ECTV infection, NK cell gamma interferon (IFN-γ) production was diminished and infected cells ceased proliferating and lost viability. ECTV infection of NK cells led to early and late virus gene expression and visualization of immature and mature virus particles, but no detectable increase in viable progeny virus. It was not unexpected that early gene expression occurred in infected NK cells, as the complete early transcription system is packaged within the virions. The detection of the secreted early virus-encoded immunomodulatory proteins IFN-γ-binding protein and ectromelia inhibitor of complement enzymes (EMICE) in NK cell culture supernatants suggests that even semi-permissive infection may permit immunomodulation of the local environment.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2411-2418 ◽  
Author(s):  
K Taga ◽  
A Yamauchi ◽  
K Kabashima ◽  
ET Bloom ◽  
J Muller ◽  
...  

Activated human natural killer (NK) cells undergo rapid apoptotic cell death after ligand binding to the Fc receptor (CD16). We examined whether human NK cells die after engagement in cytolytic functions. Peripheral blood NK cells, with and without prior activation in vitro with interleukin-2 (IL-2), were tested for the occurrence of cell death after incubation with K562, the prototype NK-sensitive target cell. A proportion (15.2%) of NK cells that were stimulated for 3 days with IL- 2 and then incubated for 4 hours with K562 cells showed rapid cell death, but NK cells not stimulated with IL-2 did not. This cell death was found to involve nuclear condensation and fragmentation and DNA cleavage, all of which are characteristic of apoptosis. These data indicate that a proportion of activated human NK cells undergo apoptosis as they engage in target cell lysis. Target-induced NK cell death may represent an important mechanism for regulation of inflammatory processes involving NK cells.


Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
Frédéric Baron ◽  
Ali G. Turhan ◽  
Julien Giron-Michel ◽  
Bruno Azzarone ◽  
Mohamed Bentires-Alj ◽  
...  

Abstract Chronic myeloid leukemia is a clonal myeloproliferative expansion of transformed primitive hematopoietic progenitor cells characterized by high-level expression of BCR-ABL chimeric gene, which induces growth factor independence. However, the influence of BCR-ABL expression on cell-mediated cytotoxicity is poorly understood. In the present study, we asked whether BCR-ABL expression interferes with leukemic target sensitivity to natural killer (NK) cell cytolysis. Our approach was based on the use of 2 BCR-ABL transfectants of the pluripotent hematopoietic cell line UT-7 expressing low (UT-7/E8, UT-7/G6) and high (UT-7/9) levels of BCR-ABL. As effector cells, we used CD56bright, CD16−, CD2− NK cells differentiated in vitro from CD34 cord blood progenitors. We demonstrated that BCR-ABL transfectants UT-7/9 were lysed by NK cells with a higher efficiency than parental and low UT-7/E8.1 and UT-7/G6 transfectants. This enhanced susceptibility to lysis correlated with an increase in expression of intercellular adhesion molecule 1 (ICAM-1) by target cells. Treatment of UT-7/9 cells by STI571 (a specific inhibitor of the abl kinase) resulted in a decrease in NK susceptibility to lysis and ICAM-1 down-regulation in target cells. Furthermore, the constitutive activation of nuclear factor-κB (NF-κB) detected in BCR-ABL transfectant UT-7/9, was significantly attenuated when cells were treated by STI571. Interestingly, inhibition of NF-κB activation by BAY11-67082 (a specific NF-κB inhibitor) resulted in down-regulation of ICAM-1 expression and a subsequent decrease in NK-induced killing of UT-7/9 transfectants. Our results show that oncogenic transformation by BCR-ABL may increase susceptibility of leukemic progenitors to NK cell cytotoxicity by a mechanism involving overexpression of ICAM-1 as a consequence of NF-κB activation.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 805-811 ◽  
Author(s):  
TK Kishimoto ◽  
RA Warnock ◽  
MA Jutila ◽  
EC Butcher ◽  
C Lane ◽  
...  

Neutrophil adhesion to interleukin-1 (IL-1)-stimulated human umbilical vein endothelial cells (HUVEC) involves the CD18 family of leukocyte integrins (lymphocyte function-associated antigen-1 [LFA-1], Mac-1, and p150,95) and LECAM-1 (DREG-56/LEU-8/LAM-1 antigen) on neutrophils and intercellular adhesion molecule-1 (ICAM-1) and endothelial leukocyte adhesion molecule-1 (ELAM-1) on the endothelium. In this study, we compare CD18-independent adhesion pathways mediated by neutrophil LECAM- 1 and endothelial ELAM-1 and find that these two pathways overlap in a variety of assays: (1) anti-LECAM-1 and anti-ELAM-1 monoclonal antibody (MoAb) inhibit neutrophil binding to HUVEC, and the inhibitory effect is not additive; (2) anti-LECAM-1 MoAb, like anti-ELAM-1 MoAb, inhibits neutrophil binding to HUVEC stimulated for 3 hours with IL-1, but not to HUVEC stimulated for 8 hours, by which time ELAM-1 expression is downregulated; (3) anti-ELAM-1 MoAb has no effect on transendothelial migration, a CD18-dependent, LECAM-1-independent neutrophil function. Interestingly, anti-ELAM MoAb has a reduced but significant inhibitory effect on the adhesion of activated neutrophils that have shed their cell-surface LECAM-1. We also show that neutrophil binding to ELAM-1- transfected L cells is inhibited not only by anti-ELAM-1 but also by anti-LECAM-1 MoAb. These results suggest that LECAM-1 and ELAM-1 can operate in the same adhesion pathway, possibly as a receptor- counterreceptor pair. LECAM-1 and ELAM-1 are likely to interact with other ligands as well, perhaps through carbohydrate determinants that modify more than one glycoprotein.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2261-2268 ◽  
Author(s):  
P Allavena ◽  
C Paganin ◽  
D Zhou ◽  
G Bianchi ◽  
S Sozzani ◽  
...  

Abstract We investigated the chemotactic activity of interleukin (IL)-12 on human natural killer (NK) cells and other leukocyte subsets. It was found that IL-12 induced directional migration of highly enriched preparations of NK cells (> 80% CD16+ and CD56+) and CD3-activated T cells (both of CD4 and CD8 subset), but not resting T cells and monocytes. On the contrary, purified polymorphonuclear cells (PMN) showed significant and reproducible chemotactic response to IL-12. The effects of IL-12 on leukocyte migration were observed in a narrow concentration range with a peak at approximately 7.5 ng/mL, and were abrogated by monoclonal antibody (MoAb) anti-IL-12 or after cytokine boiling. We also investigated the interaction of NK cells with vascular endothelium in vitro. Overnight treatment of NK cells with IL-12 augmented their binding to cultured endothelial cells (EC) obtained from umbilical veins. IL-12-increased binding was better observed when resting rather than IL-1-activated EC were used as substratum of adhesion. IL-12-augmented binding of NK cells to resting or IL-1- activated EC involved the LFA-1/ICAM-1 and VLA-4/VCAM-1 pathways. Thus, by inducing migration and interaction with EC, IL-12 regulates crucial determinants of NK-cell recruitment in tissues.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 841-846 ◽  
Author(s):  
MR Silva ◽  
R Hoffman ◽  
EF Srour ◽  
JL Ascensao

Human natural killer (NK) cells comprise 10% to 15% of peripheral blood mononuclear cells and have an important role in immune responses against tumors, viral infections, and graft rejection. NK cells originate in bone marrow (BM), but their progenitors and lineage development have not been completely characterized. We studied the generation of NK cells from purified CD34+HLADR- and CD34+HLADR+ BM progenitors and the influence of various cytokines on their production. We show that CD3-CD56+ cytotoxic NK cells can develop from both progenitors populations when interleukin-2 (IL-2) is present in an in vitro suspension culture system containing IL-1 alpha and stem cell factor. Up to 83.8% and 98.6% CD3-CD56+ cells were detected in CD34+HLADR- and CD34+DR+ cultures, respectively, after 5 weeks of culture; significant numbers of NK cells were first detected after 2 weeks. Cytotoxic activity paralleled NK cell numbers; up to 70% specific lysis at an effector:target ratio of 10:1 was observed at 5 weeks. IL-7 also triggered development of CD3-CD56+ cells from these immature progenitors (up to 24% and 55% appeared in CD34+HLADR- and CD34+HLADR+ cultures, respectively). Our data suggest that BM stromas are not necessary for NK cell development and that IL-2 remains essential for this lineage development and differentiation.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2261-2268
Author(s):  
P Allavena ◽  
C Paganin ◽  
D Zhou ◽  
G Bianchi ◽  
S Sozzani ◽  
...  

We investigated the chemotactic activity of interleukin (IL)-12 on human natural killer (NK) cells and other leukocyte subsets. It was found that IL-12 induced directional migration of highly enriched preparations of NK cells (> 80% CD16+ and CD56+) and CD3-activated T cells (both of CD4 and CD8 subset), but not resting T cells and monocytes. On the contrary, purified polymorphonuclear cells (PMN) showed significant and reproducible chemotactic response to IL-12. The effects of IL-12 on leukocyte migration were observed in a narrow concentration range with a peak at approximately 7.5 ng/mL, and were abrogated by monoclonal antibody (MoAb) anti-IL-12 or after cytokine boiling. We also investigated the interaction of NK cells with vascular endothelium in vitro. Overnight treatment of NK cells with IL-12 augmented their binding to cultured endothelial cells (EC) obtained from umbilical veins. IL-12-increased binding was better observed when resting rather than IL-1-activated EC were used as substratum of adhesion. IL-12-augmented binding of NK cells to resting or IL-1- activated EC involved the LFA-1/ICAM-1 and VLA-4/VCAM-1 pathways. Thus, by inducing migration and interaction with EC, IL-12 regulates crucial determinants of NK-cell recruitment in tissues.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 805-811 ◽  
Author(s):  
TK Kishimoto ◽  
RA Warnock ◽  
MA Jutila ◽  
EC Butcher ◽  
C Lane ◽  
...  

Abstract Neutrophil adhesion to interleukin-1 (IL-1)-stimulated human umbilical vein endothelial cells (HUVEC) involves the CD18 family of leukocyte integrins (lymphocyte function-associated antigen-1 [LFA-1], Mac-1, and p150,95) and LECAM-1 (DREG-56/LEU-8/LAM-1 antigen) on neutrophils and intercellular adhesion molecule-1 (ICAM-1) and endothelial leukocyte adhesion molecule-1 (ELAM-1) on the endothelium. In this study, we compare CD18-independent adhesion pathways mediated by neutrophil LECAM- 1 and endothelial ELAM-1 and find that these two pathways overlap in a variety of assays: (1) anti-LECAM-1 and anti-ELAM-1 monoclonal antibody (MoAb) inhibit neutrophil binding to HUVEC, and the inhibitory effect is not additive; (2) anti-LECAM-1 MoAb, like anti-ELAM-1 MoAb, inhibits neutrophil binding to HUVEC stimulated for 3 hours with IL-1, but not to HUVEC stimulated for 8 hours, by which time ELAM-1 expression is downregulated; (3) anti-ELAM-1 MoAb has no effect on transendothelial migration, a CD18-dependent, LECAM-1-independent neutrophil function. Interestingly, anti-ELAM MoAb has a reduced but significant inhibitory effect on the adhesion of activated neutrophils that have shed their cell-surface LECAM-1. We also show that neutrophil binding to ELAM-1- transfected L cells is inhibited not only by anti-ELAM-1 but also by anti-LECAM-1 MoAb. These results suggest that LECAM-1 and ELAM-1 can operate in the same adhesion pathway, possibly as a receptor- counterreceptor pair. LECAM-1 and ELAM-1 are likely to interact with other ligands as well, perhaps through carbohydrate determinants that modify more than one glycoprotein.


2016 ◽  
Vol 43 (6) ◽  
pp. 1008-1016 ◽  
Author(s):  
Paulina Chalan ◽  
Johan Bijzet ◽  
Bart-Jan Kroesen ◽  
Annemieke M.H. Boots ◽  
Elisabeth Brouwer

Objective.The role of natural killer (NK) cells in the immunopathogenesis of rheumatoid arthritis (RA) is unclear. Therefore, numerical and functional alterations of CD56dim and CD56bright NK cells in the early stages of RA development were studied.Methods.Whole blood samples from newly diagnosed, treatment-naive, seropositive (SP) and seronegative (SN) patients with RA (SP RA, n = 45 and SN RA, n = 12), patients with SP arthralgia (n = 30), and healthy controls (HC, n = 41) were assessed for numbers and frequencies of T cells, B cells, and NK cells. SP status was defined as positive for anticyclic citrullinated peptide antibodies (anti-CCP) and/or rheumatoid factor (RF). Peripheral blood mononuclear cells were used for further analysis of NK cell phenotype and function.Results.Total NK cell numbers were decreased in SP RA and SP arthralgia but not in SN RA. Also, NK cells from SP RA showed a decreased potency for interferon-γ (IFN-γ) production. A selective decrease of CD56dim, but not CD56bright, NK cells in SP RA and SP arthralgia was observed. This prompted investigation of CD16 (FcγRIIIa) triggering in NK cell apoptosis and cytokine expression. In vitro, CD16 triggering induced apoptosis of CD56dim but not CD56bright NK cells from HC. This apoptosis was augmented by adding interleukin 2 (IL-2). Also, CD16 triggering in the presence of IL-2 stimulated IFN-γ and tumor necrosis factor-α expression by CD56dim NK cells.Conclusion.The decline of CD56dim NK cells in SP arthralgia and SP RA and the in vitro apoptosis of CD56dim NK cells upon CD16 triggering suggest a functional role of immunoglobulin G-containing autoantibody (anti-CCP and/or RF)-immune complexes in this process. Moreover, CD16-triggered cytokine production by CD56dim NK cells may contribute to systemic inflammation as seen in SP arthralgia and SP RA.


Sign in / Sign up

Export Citation Format

Share Document