scholarly journals Anhydroretinol: a naturally occurring inhibitor of lymphocyte physiology.

1993 ◽  
Vol 178 (2) ◽  
pp. 675-680 ◽  
Author(s):  
J Buck ◽  
F Grün ◽  
F Derguini ◽  
Y Chen ◽  
S Kimura ◽  
...  

Vitamin A (retinol) is an essential cofactor for growth of B lymphocytes in culture and for activation of T lymphocytes by antigen receptor-mediated signals. 14-hydroxy-4,14-retro-retinol (14-HRR) a metabolite of retinol, has been implicated as the intracellular mediator of this effect. Anhydroretinol (AR) is a retinol derivative with retro structure produced in activated human B lymphocytes and the insect cell lines SF 21 and Schneider S2. AR reversibly inhibits retinol- and 14-HRR-dependent effects and blocks B lymphocyte proliferation as well as activation of resting T lymphocytes. The intracellular signaling pathway blocked by AR in T cell activation is distinct from the calcineurin/interleukin 2 pathway inhibitable by cyclosporine A or FK-506.

Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Graziella Curtale ◽  
Franca Citarella ◽  
Claudia Carissimi ◽  
Marina Goldoni ◽  
Nicoletta Carucci ◽  
...  

Abstract Activation of the T cell–mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte–mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


1994 ◽  
Vol 179 (2) ◽  
pp. 727-732 ◽  
Author(s):  
K S Ravichandran ◽  
S J Burakoff

Although both the CD4 and CD8 molecules enhance antigen responsiveness mediated by the T cell receptor (TCR), it is not known whether CD4 and CD8 initiate similar or different intracellular signals when they act as coreceptors. To characterize the early signals transmitted by CD4 and CD8, both CD4 and CD8 alpha were expressed in the same murine T cell hybridoma. In the double positive transfectants, CD4 and CD8 associated with equal amounts of p56lck (Lck), and both molecules enhanced interleukin 2 (IL-2) production equivalently when cross-linked with suboptimal levels of anti-TCR antibody. However, in an in vitro kinase assay, cross-linking CD4 initiated fourfold greater kinase activity compared with CD8 cross-linking. In the same assay, when CD4 or CD8 was cross-linked to the TCR, novel phosphorylated proteins were found associated with the TCR/CD4 complex but not with the TCR/CD8 complex. Consistent with this data, antiphosphotyrosine immunoblotting revealed greater tyrosine phosphorylation of intracellular substrates after TCR/CD4 cross-linking compared with TCR/CD8 cross-linking. Additionally, a specific protein kinase C inhibitor (RO318220) inhibited CD8-mediated enhancement of IL-2 production far more effectively than CD4-mediated enhancement. Thus, it appears that CD8 alpha may depend more on a protein kinase C-mediated signaling pathway, whereas CD4 may rely on greater tyrosine kinase activation. Such differential signaling via CD4 and CD8 has implications for thymic ontogeny and T cell activation.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2695-2702 ◽  
Author(s):  
Valeriu B. Cismasiu ◽  
Sailaja Ghanta ◽  
Javier Duque ◽  
Diana I. Albu ◽  
Hong-Mei Chen ◽  
...  

AbstractBCL11A and BCL11B are transcriptional regulators important for lymphopoiesis and previously associated with hematopoietic malignancies. Ablation of the mouse Bcl11b locus results in failure to generate double-positive thymocytes, implicating a critical role of Bcl11b in T-cell development. However, BCL11B is also expressed in CD4+ T lymphocytes, both in resting and activated states. Here we show both in transformed and primary CD4+ T cells that BCL11B participates in the control of the interleukin-2 (IL2) gene expression following activation through T-cell receptor (TCR). BCL11B augments expression from the IL2 promoter through direct binding to the US1 site. In addition, BCL11B associates with the p300 coactivator in CD4+ T cells activated through TCR, which may account for its transcriptional activation function. These results provide the first evidence that BCL11B, originally described as a transcriptional repressor, activates transcription of a target gene in the context of T-cell activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Iwona Monika Szopa ◽  
Monika Granica ◽  
Joanna Katarzyna Bujak ◽  
Agata Łabędź ◽  
Maciej Błaszczyk ◽  
...  

Expansion protocols for human T lymphocytes using magnetic beads, which serve as artificial antigen presenting cells (aAPCs), is well-studied. Yet, the efficacy of magnetic beads for propagation and functionality of peripheral blood lymphocytes (PBLs) isolated from companion dogs still remains limited. Domestic dog models are important in immuno-oncology field. Thus, we built the platform for induction of canine PBLs function, proliferation and biological activity using nano-sized magnetic beads (termed as MicroBeads) coated with anti-canine CD3 and CD28 antibodies. Herein we reveal that activation of canine PBLs via MicroBeads induces a range of genes involved in immediate-early response to T cell activation in dogs. Furthermore, canine T lymphocytes are effectively activated by MicroBeads, as measured by cluster formation and induction of activation marker CD25 on canine T cells as quickly as 24 h post stimulation. Similar to human T cells, canine PBLs require lower activation signal strength for efficient proliferation and expansion, as revealed by titration studies using a range of MicroBeads in the culture. Additionally, the impact of temperature was assessed in multiple stimulation settings, showing that both 37°C and 38.5°C are optimal for the expansion of canine T cells. In contrast to stimulation using plant mitogen Concanavalin A (ConA), MicroBead-based activation did not increase activation-induced cell death. In turn, MicroBeads supported the propagation of T cells with an effector memory phenotype that secreted substantial IL-2 and IFN-γ. Thus, MicroBeads represent an accessible and affordable tool for conducting immunological studies on domestic dog models. Similarities in inducing intracellular signaling pathways further underscore the importance of this model in comparative medicine. Presented herein MicroBead-based expansion platforms for canine PBLs may benefit adoptive immunotherapy in dogs and facilitate the design of next-generation clinical trials in humans.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 350-352 ◽  
Author(s):  
Simona Ronchetti ◽  
Giuseppe Nocentini ◽  
Carlo Riccardi ◽  
Pier Paolo Pandolfi

Abstract In this study, we describe the generation and characterization of mice in which GITR gene (TNFRSF18 [tumor necrosis factor receptor superfamily 18]), a member of the TNFRSF expressed mainly on T lymphocytes, has been ablated (GITR−/− mice). Results indicate that GITR inactivation does not impair the normal development of the lymphoid organs but modulates T-cell activation. In fact, whenGITR−/− T lymphocytes are activated by treatment with an anti-CD3 monoclonal antibody they proliferate more than wild-type cells. Moreover, activatedGITR−/− T lymphocytes express higher levels of interleukin-2 receptor, produce larger amounts of interleukin-2, and are more sensitive to activation-induced cell death than controls. These results suggest that GITR is involved in the regulation of T-cell receptor/CD3–driven T-cell activation and programmed cell death.


1992 ◽  
Vol 175 (6) ◽  
pp. 1483-1492 ◽  
Author(s):  
D Davidson ◽  
L M Chow ◽  
M Fournel ◽  
A Veillette

Recent observations suggest that the src-related tyrosine protein kinase p59fyn may be involved in antigen-induced T lymphocyte activation. As a result of alternative splicing, p59fyn exists as two isoforms that differ exclusively within a short sequence spanning the end of the Src Homology 2 (SH2) region and the beginning of the tyrosine protein kinase domain. While one p59fyn isoform (fynB) is highly expressed in brain, the alternative product (fynT) is principally found in T lymphocytes. To further understand the role of p59fyn in T cell activation and to test the hypothesis that p59fynT serves a tissue-specific function in T lymphocytes, we have examined the effects of expression of activated versions (tyrosine 528 to phenylalanine 528 mutants) of either form of p59fyn on the physiology of an antigen-specific mouse T cell hybridoma. Our results demonstrated that the two forms of fyn, expressed in equivalent amounts, efficiently enhanced antibody-induced T cell receptor (TCR)-mediated signals. In contrast, only p59fynT increased interleukin 2 production in response to antigen stimulation. This finding implies that the distinct p59fyn isoform expressed in T lymphocytes regulates the coupling of TCR stimulation by antigen/major histocompatibility complex to lymphokine production.


1981 ◽  
Vol 153 (4) ◽  
pp. 871-882 ◽  
Author(s):  
H Y Tse ◽  
J J Mond ◽  
W E Paul

For the purpose of examining more closely the interaction between T and B lymphocytes, we have developed an in vitro T lymphocyte-dependent B lymphocyte proliferation assay. Proliferation of B lymphocytes in response to antigen was found to depend on the presence of primed T lymphocytes; the B lymphocytes could be derived from nonprimed animals. It appears that these B cells were nonspecifically recruited to proliferate. This nonspecific recruitment, however, was found to be Ir-gene restricted in that B lymphocytes from B10.S mice, which are genetic nonresponders to the polymer Glu60-Ala30-Tyr10 (GAT), could not be stimulated by GAT-primed (responder X nonresponder) F1 T cells. The apparent lack of antigen specificity in the face of Ir gene-restricted T-B interaction may have important implications in our understanding of the recognition unit(s) on T lymphocytes.


1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


Sign in / Sign up

Export Citation Format

Share Document