scholarly journals Isolation of a nuclease-resistant decoy RNA that selectively blocks autoantibody binding to insulin receptors on human lymphocytes.

1996 ◽  
Vol 184 (2) ◽  
pp. 315-324 ◽  
Author(s):  
S W Lee ◽  
B A Sullenger

An RNA containing 2'-amino pyrimidines has been isolated using in vitro selection techniques that specifically and avidly (apparent Kd approximately 30 nM) binds a mouse monoclonal antibody called MA20. This 2'-amino-derivatized RNA is at least 10,000-fold more stable than unmodified RNA in serum, and can act as a decoy and block MA20 binding to its natural antigen, the human insulin receptor, on lymphocytes. Furthermore, this RNA decoy can inhibit MA20-mediated downmodulation of insulin receptor expression on human lymphocytes in culture by up to 90%. Surprisingly, the decoy RNA cross-reacts with autoantibodies from patients with extreme insulin resistance and can inhibit these antiinsulin receptor antibodies from downmodulating insulin receptor expression by up to 80% without impeding insulin binding to its receptor. These results suggest that in vitro-selected decoy RNAs may be able to specifically and selectively block oligoclonal autoimmune responses to self-antigens in patients with autoimmune diseases.

1996 ◽  
Vol 17 (1) ◽  
pp. 7-17 ◽  
Author(s):  
D M Thomas ◽  
S D Rogers ◽  
K W Ng ◽  
J D Best

ABSTRACT Corticosteroids have profound effects on bone metabolism, though the underlying mechanisms remain unclear. They are also known to alter glucose metabolism, in part by induction of insulin resistance. To determine whether corticosteroids impair glucose metabolism in bone cells, we have examined the actions of dexamethasone (DEX) on glucose transport and insulin receptor expression using osteoblast-like UMR 106-01 cells. DEX was shown to inhibit basal 2-deoxyglucose uptake by up to 30% in a time- and dose-dependent manner. It inhibited insulin-stimulated glucose transport by 13%. By Northern and Western blot analysis, DEX was shown to stimulate insulin receptor mRNA and protein by up to 5·6-fold, but it had no effect on expression of the glucose transporter GLUT 1 mRNA or protein under basal conditions. However, DEX augmented insulin-stimulated GLUT 1 mRNA and protein levels. By Scatchard analysis of labelled insulin binding, DEX increased insulin receptor number per cell by 54%. Subcellular fractionation and Western blot analysis demonstrated that DEX caused a redistribution of immunoreactive GLUT 1 from plasma membrane to intracellular microsomes, resulting in a 21% decrease in GLUT 1 at the plasma membrane. These data suggest that (i) DEX impairs basal glucose transport by post-translational mechanisms in UMR 106-01 cells, (ii) DEX increases insulin receptor mRNA, protein and insulin binding and (iii) the inhibition of glucose transport by DEX dominates its effects on the insulin receptor. It is possible that DEX inhibition of glucose transport in osteoblasts may contribute to steroid-induced osteoporosis.


1983 ◽  
Vol 245 (5) ◽  
pp. E494-E501
Author(s):  
R. H. Whitson ◽  
S. A. Kaplan

Monocytes separated from human blood by Ficoll-Hypaque and adherence to polystyrene flasks were maintained successfully in culture for 7 days. The cultured cells showed normal morphology and good viability. The insulin binding properties of the cultured monocytes were also identical to those of fresh monocytes. In vitro pretreatment of the monocytes with insulin decreased both the number and affinity of insulin receptors, resulting in a 72% reduction in the binding of tracer quantities of 125I-insulin. Insulin-induced receptor down regulation was dose-dependent and specific to the insulin receptor. Monocytes pretreated with insulin in the presence of the cyclic nucleotide phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) lost significantly fewer insulin receptors than monocytes treated with insulin alone. Tracer binding to these cells was 62% of control levels. MIX had no effect on basal insulin binding. The cAMP analogues N6,O2'-dibutyryl cAMP and 8-bromo-cAMP did not counteract insulin-induced receptor downregulation by themselves and did not significantly enhance the effects of MIX. These results indicate that MIX may counteract insulin receptor downregulation by a cAMP-independent process.


1992 ◽  
Vol 126 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Salvatore Di Paolo

The effect of metformin on insulin binding and insulin action in the presence of anti-insulin receptor antibodies was investigated in a case of type B extreme insulin resistance. Oral administration of metformin (1 500 mg/d) for 10 days significantly decreased plasma blood glucose and insulin levels and enhanced the hypoglycemic response to exogenous insulin. In vitro preincubation of normal erythrocytes with insulin receptor antibody from the patient plus 4× 10−5 mol/l metformin markedly enhanced insulin binding to receptors, compared to cells incubated with antibody alone. This effect was apparent after 2 h, was maximal after 4 h and did not change up to 24 h. Closely similar results were found when human adipocytes were studied. Analysis of binding data confirmed the increase in both receptor number and affinity. One hour exposure of control adipocytes to metformin enhanced basal lipogenesis by more than 30%. Acute exposure of fat cells to the patient's receptor antibodies resulted in a stimulation of glucose transport and a state of severe insulin resistance. The addition of metformin to antibody in preincubation buffer strongly enhanced basal glucose incorporation into lipids, but did not prevent insulin unresponsiveness. It is suggested that metformin increases, possibly through a change in the spatial conformation of insulin receptor within the plasma membrane, the availability of preexisting receptors to insulin binding and/or decreases the availability of specific epitopes to antibody anchoring. Further, in the model of insulin resistance described here, metformin enhanced the basal rate of glucose transport through a direct insulin-mimicking activity and/or a potentiation of the sensitivity of glucose transport to the antibody.


1986 ◽  
Vol 233 (3) ◽  
pp. 677-681 ◽  
Author(s):  
H G Joost ◽  
H J Steinfelder ◽  
C Schmitz-Salue

The kinase activity of partially purified insulin receptor obtained from human placenta was studied. When autophosphorylation of the beta-subunit of the receptor was initiated by ATP prior to the addition of the exogenous substrate, both basal and insulin-stimulated kinase activity was increased. However, half-maximum effective insulin concentrations were unchanged. Insulin receptor autophosphorylation as stimulated by ATP and insulin failed to affect significantly 125I-insulin binding to partially purified insulin receptor from human placenta. It is concluded that autophosphorylation of the insulin receptors regulates its kinase activity but not its affinity for insulin. The catalytic subunit of cyclic AMP-dependent protein kinase failed to phosphorylate either subunit of the insulin receptor, and each kinase failed to affect the affinity of the other one. Thus no functional interaction between cyclic AMP-dependent protein kinase and insulin receptors was observed in the in vitro system.


1995 ◽  
Vol 269 (2) ◽  
pp. E277-E282 ◽  
Author(s):  
M. Taouis ◽  
D. Deville de Periere ◽  
D. Hillaire-Buys ◽  
M. Derouet ◽  
R. Gross ◽  
...  

Earlier studies indicate the presence of an insulin-like immunoreactivity (ILI) in rat submandibular salivary glands (SSG). Previous observations also showed that streptozotocin (STZ)-induced diabetes was accompanied by an increase in SSG ILI concentrations. In the present work we studied the effect of SSG ILI from normal and STZ diabetic rats (ILI-N and ILI-D, respectively) on insulin receptor binding and function in LMH cell line. ILI-N and ILI-D inhibited 125I-insulin binding to intact cells and wheat germ agglutinin (WGA)-purified insulin receptors with a high affinity. Furthermore, ILI-N and ILI-D activated, although weakly, the beta-subunit autophosphorylation of solubilized and WGA-purified insulin receptors. An ATP hydrolytic activity was present in ILI-N and, to a greater extent, in ILI-D extracts, which can at least in part explain their low potency for activating autophosphorylation and kinase activity of insulin receptors in vitro. However, after ILI treatment of intact cells and immunoprecipitation of insulin receptors, ILI induced a dose-dependent tyrosine phosphorylation of the insulin receptor beta-subunit. Finally, ILI-N and ILI-D stimulated amino acid uptake and lipogenesis in LMH cells. These findings suggest that SSG ILI is biologically active and can participate in metabolic regulations.


Sign in / Sign up

Export Citation Format

Share Document