Dexamethasone modulates insulin receptor expression and subcellular distribution of the glucose transporter GLUT 1 in UMR 106-01, a clonal osteogenic sarcoma cell line

1996 ◽  
Vol 17 (1) ◽  
pp. 7-17 ◽  
Author(s):  
D M Thomas ◽  
S D Rogers ◽  
K W Ng ◽  
J D Best

ABSTRACT Corticosteroids have profound effects on bone metabolism, though the underlying mechanisms remain unclear. They are also known to alter glucose metabolism, in part by induction of insulin resistance. To determine whether corticosteroids impair glucose metabolism in bone cells, we have examined the actions of dexamethasone (DEX) on glucose transport and insulin receptor expression using osteoblast-like UMR 106-01 cells. DEX was shown to inhibit basal 2-deoxyglucose uptake by up to 30% in a time- and dose-dependent manner. It inhibited insulin-stimulated glucose transport by 13%. By Northern and Western blot analysis, DEX was shown to stimulate insulin receptor mRNA and protein by up to 5·6-fold, but it had no effect on expression of the glucose transporter GLUT 1 mRNA or protein under basal conditions. However, DEX augmented insulin-stimulated GLUT 1 mRNA and protein levels. By Scatchard analysis of labelled insulin binding, DEX increased insulin receptor number per cell by 54%. Subcellular fractionation and Western blot analysis demonstrated that DEX caused a redistribution of immunoreactive GLUT 1 from plasma membrane to intracellular microsomes, resulting in a 21% decrease in GLUT 1 at the plasma membrane. These data suggest that (i) DEX impairs basal glucose transport by post-translational mechanisms in UMR 106-01 cells, (ii) DEX increases insulin receptor mRNA, protein and insulin binding and (iii) the inhibition of glucose transport by DEX dominates its effects on the insulin receptor. It is possible that DEX inhibition of glucose transport in osteoblasts may contribute to steroid-induced osteoporosis.

1998 ◽  
Vol 274 (5) ◽  
pp. R1446-R1453 ◽  
Author(s):  
T. S. David ◽  
P. A. Ortiz ◽  
T. R. Smith ◽  
J. Turinsky

Rat epididymal adipocytes were incubated with 0, 0.1, and 1 mU sphingomyelinase/ml for 30 or 60 min, and glucose uptake and GLUT-1 and GLUT-4 translocation were assessed. Adipocytes exposed to 1 mU sphingomyelinase/ml exhibited a 173% increase in glucose uptake. Sphingomyelinase had no effect on the abundance of GLUT-1 in the plasma membrane of adipocytes. In contrast, 1 mU sphingomyelinase/ml increased plasma membrane content of GLUT-4 by 120% and produced a simultaneous decrease in GLUT-4 abundance in the low-density microsomal fraction. Sphingomyelinase had no effect on tyrosine phosphorylation of either the insulin receptor β-subunit or the insulin receptor substrate-1, a signaling molecule in the insulin signaling pathway. It is concluded that the incubation of adipocytes with sphingomyelinase results in insulin-like translocation of GLUT-4 to the plasma membrane and that this translocation does not occur via the activation of the initial components of the insulin signaling pathway.


1992 ◽  
Vol 117 (4) ◽  
pp. 729-743 ◽  
Author(s):  
RC Piper ◽  
C Tai ◽  
JW Slot ◽  
CS Hahn ◽  
CM Rice ◽  
...  

GLUT-4 is the major facilitative glucose transporter isoform in tissues that exhibit insulin-stimulated glucose transport. Insulin regulates glucose transport by the rapid translocation of GLUT-4 from an intracellular compartment to the plasma membrane. A critical feature of this process is the efficient exclusion of GLUT-4 from the plasma membrane in the absence of insulin. To identify the amino acid domains of GLUT-4 which confer intracellular sequestration, we analyzed the subcellular distribution of chimeric glucose transporters comprised of GLUT-4 and a homologous isoform, GLUT-1, which is found predominantly at the cell surface. These chimeric transporters were transiently expressed in CHO cells using a double subgenomic recombinant Sindbis virus vector. We have found that wild-type GLUT-4 is targeted to an intracellular compartment in CHO cells which is morphologically similar to that observed in adipocytes and muscle cells. Sindbis virus-produced GLUT-1 was predominantly expressed at the cell surface. Substitution of the GLUT-4 amino-terminal region with that of GLUT-1 abolished the efficient intracellular sequestration of GLUT-4. Conversely, substitution of the NH2 terminus of GLUT-1 with that of GLUT-4 resulted in marked intracellular sequestration of GLUT-1. These data indicate that the NH2-terminus of GLUT-4 is both necessary and sufficient for intracellular sequestration.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


1995 ◽  
Vol 269 (3) ◽  
pp. E605-E610
Author(s):  
R. S. Haber ◽  
C. M. Wilson ◽  
S. P. Weinstein ◽  
A. Pritsker ◽  
S. W. Cushman

The stimulation of glucose transport by 3,5,3'-triiodo-L-thyronine (T3) in the liver-derived ARL 15 cell line is only partly attributable to increased GLUT-1 glucose transporter gene expression. To test the hypothesis that T3 increases the partitioning of GLUT-1 to the cell surface, we quantitated surface GLUT-1 using the photolabel ATB-[3H]BMPA. In control cells only approximately 20% of total cellular GLUT-1 was present at the cell surface. T3 treatment (100 nM) for 6 h increased the rate of 2-deoxy-[3H]glucose (2-DG) uptake by 30, 92, and 95% in three experiments and increased surface GLUT-1 photolabeling by 17, 81, and 72%, respectively, with no increase in total cellular GLUT-1. T3 treatment for 48 h increased 2-DG uptake by 143, 172, and 216% in three experiments and increased cell surface GLUT-1 photolabeling by 88, 161, and 184%, respectively, with smaller increases in total cellular GLUT-1. T3 treatment for 48 h thus increased the fraction of cellular GLUT-1 at the plasma membrane from 21 +/- 2 to 35 +/- 3% (SE). We conclude that most of the early (6-h) stimulation of glucose transport by T3 in ARL 15 cells is mediated by an increase in the partitioning of GLUT-1 to the plasma membrane. With more chronic T3 treatment (48 h), the enhanced surface partitioning of GLUT-1 is persistent and is superimposed on an increase in total cellular GLUT-1, accounting for a further increase in glucose transport.


1992 ◽  
Vol 286 (1) ◽  
pp. 157-163 ◽  
Author(s):  
R Greco-Perotto ◽  
E Wertheimer ◽  
B Jeanrenaud ◽  
E Cerasi ◽  
S Sasson

The effect of culture conditions simulating hypo- and hyper-glycaemia on glucose transport and on the subcellular localization of the glucose transporter GLUT-1 was studied in L8 myocytes. Incubation of the cells with 20 mM-glucose for 25 h decreased the rate of 2-deoxy-D-[3H]glucose (dGlc) uptake to 0.106 +/- 0.016 nmol/min per 10(6) cells compared with 0.212 +/- 0.025 in cells maintained at 2 mM-glucose (final glucose concentrations at the end of the incubation period were 16-17 mM and 0.7-1.0 mM respectively). An additional 5 h incubation of these cells with medium containing the opposite glucose concentration (i.e. change from 17 mM to 1 mM and from 1 mM to 17 mM) increased the transport rate to 0.172 +/- 0.033 nmol/min per 10(6) cells in cultures initially conditioned at high glucose, and decreased the transport to 0.125 +/- 0.029 in those conditioned at low glucose. Plasma-membrane- and microsomal-membrane-enriched fractions were prepared from these cells for [3H]cytochalasin B (CB) binding and Western-blot analysis with antibodies against GLUT-1 and GLUT-4. A decrease in glucose concentration increased the number of D-glucose-displaceable CB-binding sites and GLUT-1 protein in the plasma-membrane fraction to the same extent as the increase in dGlc transport. Under downregulatory conditions, the lower dGlc-transport capacity could be accounted for by a decreased number of transporters in the plasma membrane of the cells. No apparent modification of the intrinsic activity of the glucose transporters was observed in up- or down-regulated cells. Under downregulatory conditions, the CB-binding data indicated a large increase in the number of transporters in the intracellular membranes of the myocytes. Western blots of the same membranes also indicated an increase in GLUT-1 content. However, the interaction of the intracellular GLUT-1 protein with the polyclonal antibodies was much weaker than that of the plasma-membrane-associated GLUT-1. The GLUT-4 concentration was too low to permit quantification in membrane fractions. Our findings suggest that autoregulation of glucose transport in L8 myocytes is accompanied by parallel changes in the number of GLUT-1 transporters in the plasma membrane, and that the rate of transporter degradation may be augmented in the upregulated myocytes. These glucose-induced changes are fully reversible.


1993 ◽  
Vol 264 (6) ◽  
pp. E882-E889 ◽  
Author(s):  
M. F. Hirshman ◽  
L. J. Goodyear ◽  
E. D. Horton ◽  
L. J. Wardzala ◽  
E. S. Horton

The relative abundance and subcellular distribution of the GLUT-1 and GLUT-4 glucose transporter isoforms were determined in basal and insulin-stimulated adipose cells from wheel cage exercise-trained rats and compared with both age-matched sedentary controls and young cell size-matched sedentary controls. Exercise training increased total estimated GLUT-4 by 67 and 54% compared with age-matched and young controls, respectively. Total estimated GLUT-1 per cell was not significantly different among the three groups. Expressed per cell, plasma membrane GLUT-4 protein in basal adipose cells from exercise-trained and age-matched control rats was 2.5-fold greater than in young controls (P < 0.05) and was associated with higher basal rates of glucose transport in these cells (P < 0.02). In insulin-stimulated cells, plasma membrane GLUT-4 was 67% greater in the exercise-trained animals than young controls (P < 0.01), and 31% greater than in age-matched controls. Rates of glucose transport were correspondingly higher. In basal cells, low-density microsomal GLUT-4 from exercise-trained rats was approximately twofold greater than from age-matched controls and young controls. With insulin stimulation, GLUT-4 in low-density microsomes decreased to similar levels in all groups. We conclude that the total amount of GLUT-4 protein, but not GLUT-1, is increased in adipose cells by exercise training and that this increase in GLUT-4 is due primarily to an increase in intracellular GLUT-4.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 184 (2) ◽  
pp. 315-324 ◽  
Author(s):  
S W Lee ◽  
B A Sullenger

An RNA containing 2'-amino pyrimidines has been isolated using in vitro selection techniques that specifically and avidly (apparent Kd approximately 30 nM) binds a mouse monoclonal antibody called MA20. This 2'-amino-derivatized RNA is at least 10,000-fold more stable than unmodified RNA in serum, and can act as a decoy and block MA20 binding to its natural antigen, the human insulin receptor, on lymphocytes. Furthermore, this RNA decoy can inhibit MA20-mediated downmodulation of insulin receptor expression on human lymphocytes in culture by up to 90%. Surprisingly, the decoy RNA cross-reacts with autoantibodies from patients with extreme insulin resistance and can inhibit these antiinsulin receptor antibodies from downmodulating insulin receptor expression by up to 80% without impeding insulin binding to its receptor. These results suggest that in vitro-selected decoy RNAs may be able to specifically and selectively block oligoclonal autoimmune responses to self-antigens in patients with autoimmune diseases.


1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


Sign in / Sign up

Export Citation Format

Share Document