scholarly journals Systemic T Cell–independent Tumor Immunity after Transplantation of Universal Receptor–modified Bone Marrow into SCID Mice

1996 ◽  
Vol 184 (6) ◽  
pp. 2261-2270 ◽  
Author(s):  
Kristen M. Hege ◽  
Keegan S. Cooke ◽  
Mitchell H. Finer ◽  
Krisztina M. Zsebo ◽  
Margo R. Roberts

Gene modification of hematopoietic stem cells (HSC) with antigen-specific, chimeric, or “universal” immune receptors (URs) is a novel but untested form of targeted immunotherapy. A human immunodeficiency virus (HIV) envelope–specific UR consisting of the extracellular domain of human CD4 linked to the ζ chain of the T cell receptor (CD4ζ) was introduced ex vivo into murine HSC by retroviral transduction. After transplantation into immunodeficient SCID mice, sustained high level expression of CD4ζ was observed in circulating myeloid and natural killer cells. CD4ζ-transplanted mice were protected from challenge with a lethal dose of a disseminated human leukemia expressing HIV envelope. These results demonstrate the ability of chimeric receptors bearing ζ-signaling domains to activate non–T cell effector populations in vivo and thereby mediate systemic immunity.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1359-1359
Author(s):  
Prabal Banerjee ◽  
Lindsey Crawford ◽  
Michelle Sieburg ◽  
Patrick Green ◽  
Mark A Beilke ◽  
...  

Abstract Human T-lymphotropic virus type-1 (HTLV-1) is a human retrovirus linked to cancer and is the etiologic agent of Adult T-cell leukemia/lymphoma (ATLL), an aggressive CD4+/CD25+ T cell malignancy. The early molecular events induced by HTLV-1 infection as well as the role of various viral genes in the induction of leukemia remain unclear, predominantly due to the lack of an animal model that recapitulates ATLL development. HTLV-1 infection of humanized NOD/SCID mice (HTLV-1- HU-SCID) was achieved by inoculation of NOD/SCID mice with CD34+ hematopoietic progenitor cells and stem cells (CD34+ HP/HSCs) infected ex vivo with HTLV-1. HTLV-1-HU-NOD/SCIDmice consistently developed CD4+CD25+ T cell lymphomas with clinical characteristics associated with ATLL and infected mice showed hyperproliferation of infected human stem cells (CD34+CD38−) in the bone marrow. Inoculation of NOD/SCID mice withCD34+ HP/HSCs transduced with a lentivirus vector (LV) expressing the HTLV-1oncoprotein (Tax1) also developed CD4+CD25+ lymphomas. The HTLV-1 bZIP protein(HBZ), encoded by the minus strand of the HTLV-1 genome, is expressed in all ATLL cells and has been implicated in the maintenance of leukemogenesis. HBZ has previously been previously shown to interact with numerous cellular factors and can modulate Tax1 activity in vitro. To establish the role of HBZ in HTLV-1 replication and leukemogenesis in vivo, HU-SCID mice were infected with an infectious proviral clone lacking functional HBZ (HTLV-1ΔHBZ). HTLV-1ΔHBZ-infected HU-SCID mice developed lymphoproliferations with an immature preleukemic CD4−CD8−CD90+ phenotype starting at ~10 weeks post-reconstitution. In contrast wild type HTLV-1 infection reproducibly induces a mature CD4+CD25+ CD90− lymphoma. Lymphoma cells successfully engrafted naïve NOD/SCID mice when injected into the peritoneal cavity and these cells maintain the expression of viral proteins, gp46env and p19gag. HTLV-1 infection of CD34+ HP/HSCs and the recapitulation of a lymphoma similar to ATLL in HU-NOD/SCID mice suggest that hematopoietic stem cells provide a relevant cellular target and viral reservoir in vivo and that infection of these cells contribute to viral lymphomagenesis in humans. The HTLV-1-HU-SCID mouse model presents a compelling in vivo model to characterize molecular initiation and progression of events in the generation of ATL and to establish the role of HTLV-1 auxiliary proteins in viral pathogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koen Debackere ◽  
Lukas Marcelis ◽  
Sofie Demeyer ◽  
Marlies Vanden Bempt ◽  
Nicole Mentens ◽  
...  

AbstractPeripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2851-2858 ◽  
Author(s):  
Yukari Okamoto ◽  
Daniel C. Douek ◽  
Richard D. McFarland ◽  
Richard A. Koup

Abstract Immune reconstitution is a critical component of recovery after treatment of human immunodeficiency virus (HIV) infection, cancer chemotherapy, and hematopoietic stem cell transplantation. The ability to enhance T-cell production would benefit such treatment. We examined the effects of exogenous interleukin-7 (IL-7) on apoptosis, proliferation, and the generation of T-cell receptor rearrangement excision circles (TRECs) in human thymus. Quantitative polymerase chain reaction demonstrated that the highest level of TRECs (14 692 copies/10 000 cells) was present in the CD1a+CD3−CD4+CD8+stage in native thymus, suggesting that TREC generation occurred following the cellular division in this subpopulation. In a thymic organ culture system, exogenous IL-7 increased the TREC frequency in fetal as well as infant thymus, indicating increased T-cell receptor (TCR) rearrangement. Although this increase could be due to the effect of IL-7 to increase thymocyte proliferation and decrease apoptosis of immature CD3− cells, the in vivo experiments using NOD/LtSz-scid mice given transplants of human fetal thymus and liver suggested that IL-7 can also directly enhance TREC generation. Our results provide compelling evidence that IL-7 has a direct effect on increasing TCR-αβ rearrangement and indicate the potential use of IL-7 for enhancing de novo naı̈ve T-cell generation in immunocompromised patients.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1909 ◽  
Author(s):  
D. Branch Moody ◽  
Sara Suliman

The human cluster of differentiation (CD)1 system for antigen display is comprised of four types of antigen-presenting molecules, each with a distinct functional niche: CD1a, CD1b, CD1c, and CD1d. Whereas CD1 proteins were thought solely to influence T-cell responses through display of amphipathic lipids, recent studies emphasize the role of direct contacts between the T-cell receptor and CD1 itself. Moving from molecules to diseases, new research approaches emphasize human CD1-transgenic mouse models and the study of human polyclonal T cells in vivo or ex vivo in disease states. Whereas the high genetic diversity of major histocompatibility complex (MHC)-encoded antigen-presenting molecules provides a major hurdle for designing antigens that activate T cells in all humans, the simple population genetics of the CD1 system offers the prospect of discovering or designing broadly acting immunomodulatory agents.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3106-3106
Author(s):  
Bruno Nervi ◽  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
Gerhard Bauer ◽  
Jon Walker ◽  
...  

Abstract GvHD remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion. The human GvHD pathophysiology includes recipient tissue destruction and proinflammatory cytokine production associated with the conditioning regimen; donor T cells become allo-activated, proliferate, and mediate tissue injury in various organs, including the liver, skin, and gut. Modern therapeutic strategies to control GvHD while maintaining the beneficial graft-versus-leukemia effects require ex vivo T cell stimulation and expansion. Multiple studies have demonstrated that these ex vivo expanded T cells exhibit decreased survival and function in vivo, including reduced alloreactivity and GvHD potential. Unfortunately no in vivo models exist to consistently examine the impact of ex vivo manipulation of human T cells (HuT) on T cell function. Naive HuT were compared to HuT activated using CD3/28 beads (XcyteTMDynabeads) with 50 U/ml IL-2 for 4 days (Act). We initially evaluated the HuT engraftment and GvHD potential of naive and Act in RAG2γ null mice (n=22) conditioned with clodronate liposomes on day −1 and 350cGy on day 0, as previously described by others. We injected 107 and 1.5x107 naive or Act HuT intravenously (iv). All mice exhibited low HuT engraftment and no lethal GvHD. NOD SCIDβ 2M null mice (β 2M) were next conditioned with 250cGy on day −1 (n=34), or 300cGy on day 0 (n=21). 107 naive vs Act HuT were injected retroorbitaly (ro). Lower HuT doses or iv injection resulted in no expansion or GvHD. Engraftment of HuT in peripheral blood of recipient mice was evaluated weekly by FACS and euthanasia was performed if mice lost > 20% body weight. 60% of the mice conditioned with 250cGy that received naive HuT developed lethal GvHD, in comparison to 75% of mice that received 300cGy and nave HuT, and 100% of mice that received 300cGy and Act HuT. Table 1 250cGy 300cGy Naive (n=34) Naive (n=8) Activated (n=13) *p<0.02 PB engraftment (%HuT) 20%±15 33%±21 59%±19 Lethal GvHD 60% 75% 100% All mice receiving 300cGy had well preserved CD4/CD8 ratios (1–1.5). Tissue infiltration was greatest in mice that had received 300cGy and Act HuT (spleen, liver, lung, kidney: 50–70%). Of interest, serum levels of hu IFNγ dramatically increased over time in all mice who went on to develop lethal GvHD (day 3=270 ug/ml and day 15=36,000 ug/ml) compared to mice that did not develop lethal GvHD (day 10=40 ug/ml and day 17=1,020 ug/ml)(p<0.05). Interestingly, the up-regulation of the activation markers CD25 and CD30 in HuT, and IFNγ production predicted lethal GvHD in β 2M null mice. In summary, we developed a xenogeneic model of lethal GvHD where naive or ex vivo Act HuT injected ro in sublethaly irradiated β 2M not only engraft, expand in vivo, but also infiltrate and damage different mouse target organs. HuT are allo-activated against mouse antigens and damage the target tissues, sharing the major characteristics of human GvHD and causing the death of mice. This model will allow us to study the effects of specific ex vivo T cell manipulation including transduction, selection, expansion, and the depletion or addition of various T cells and other cellular subsets on the outcome of GvHD, to determine improved therapeutic interventions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3222-3222
Author(s):  
Jenny Zilberberg ◽  
Kira Goldgirsh ◽  
Robert Korngold ◽  
Thea M. Friedman

Abstract CD4+CD25+ regulatory T cells (Treg) are essential for the maintenance of self-tolerance and have also been implicated in the control of alloreactive immune responses. Several studies using murine models of graft-vs.-host disease (GVHD) have shown that addition of equivalent numbers of Treg to the donor T cell inoculum at time of hematopoietic stem cell transplantation can significantly reduce the incidence of GVHD. In addition, in an MHC-matched, minor histocompatibility disparate model, the infusion of Treg ten days post-transplantation was shown to ameliorate the progression of GVHD while permitting a graft-versus-leukemia effect. However, because Treg constitute <5% of peripheral CD4+ T cells in humans, the use of freshly isolated Treg to treat and/or prevent GVHD, as well as other diseases in the clinical situation, is limited. Therefore, much effort is now under way to expand Treg in order to have sufficient numbers for therapeutic use. There is little available information regarding the repertoire complexity of ex vivo, polyclonally expanded regulatory T cells. We hypothesize that like their CD4+CD25− T cell counterparts, the diversity of the Treg T cell receptor (TCR) repertoire will also be complex. To this end, CD4+CD25− and CD4+CD25+ T cells from B10.BR mice were purified using fluorescence activated cell sorting; both populations were polyclonally expanded using CD3/CD28 paramagnetic microbeads in combination with high levels (100 IU/ml) of hrIL-2. After achieving a greater than 50 fold expansion, RNA from 1–1.5×107 cells was isolated for RT-PCR. The complexity of the T cell repertoire of expanded CD4+CD25− and CD4+CD25+ was determined using TCR Vb CDR3-size spectratype analysis. The PCR products were run on a sequencing gel and analyzed by the GeneMapper Software from Applied Biosystems. This comparison revealed that the number of resolvable Vb families is more heterogeneous in the CD25− populations. Whether this reflected a lack of complexity in the regulatory repertoire warrants further investigation. However, for the resolvable Vb families there were no significant differences in the complexity indexes between these two groups.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1137-1137
Author(s):  
Tong Wu ◽  
Hyeoung Joon Kim ◽  
Stephanie E. Sellers ◽  
Kristin E. Meade ◽  
Brian A. Agricola ◽  
...  

Abstract Low-level retroviral transduction and engraftment of hematopoietic long-term repopulating cells in large animals and humans remain primary obstacles to the successful application of hematopoietic stem cell(HSC) gene transfer in humans. Recent studies have reported improved efficiency by including stromal cells(STR), or the fibronectin fragment CH-296(FN), and various cytokines such as flt3 ligand(FLT) during ex vivo culture and transduction in nonhuman primates. In this work, we extend our studies using the rhesus competitive repopulation model to further explore optimal and transduction in the presence of either preformed autologous STR or immobilized FN. Long-term clinically relevant gene marking levels in multiple hematopoietic lineages from both conditions were demonstrated in vivo by semiquantitative PCR, colony PCR, and genomic Southern blotting, suggesting that FN could replace STR in ex vivo transduction protocols. Second, we compared transduction on FN in the presence of IL-3, IL-6, stem cell factor(SCF), and FLT(our best cytokine combination in prior studies)with a combination of megakaryocyte growth and development factor(MGDF), SCF, and FLT. Gene marking levels were equivalent in these animals, with no significant effect on retroviral gene transfer efficiency assessed in vivo by the replacement of IL-3 and IL-6 with MGDF. Our results indicate that SCF/G-CSF-mobilized PB CD34+ cells are transduced with equivalent efficiency in the presence of either STR or FN, with stable long-term marking of multiple lineages at levels of 10–15% and transient marking as high as 54%. These results represent an advance in the field of HSC gene transfer using methods easily applied in the clinical setting.


2021 ◽  
Vol 2 (4) ◽  
pp. 100961
Author(s):  
Clémence Grosjean ◽  
Julie Quessada ◽  
Mathis Nozais ◽  
Marie Loosveld ◽  
Dominique Payet-Bornet ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 812-812 ◽  
Author(s):  
Emanuela I Sega ◽  
Dennis Leveson-Gower ◽  
Vu H. Nguyen ◽  
Robert Negrin

Abstract Graft versus host disease (GVHD) is a major complication of hematopoietic stem cell transplantation resulting from donor T cell reactivity against host tissue antigens. CD4+CD25+Foxp3+ regulatory T cells (Treg) are known to be important in maintaining self tolerance and preventing autoimmunity. Using murine models of acute GVHD in which allogeneic bone marrow cells are transplanted into lethally irradiated hosts, we and others have shown that donor Treg are able to suppress GVHD induced by donor allogeneic T cells and dramatically improve survival. Treg are rare and suppression of GVHD requires adequate numbers of Treg in relation to the number of conventional T cells (Tcon). To overcome this problem, expansion of Treg has been performed, however there has not been a head to head comparison of the function of expanded vs fresh Treg. Highly purified CD4+CD25+Foxp3+ T cells (>98% purity) were expanded using anti-CD3/anti-CD28 dynabeads and 1000 U/ml IL-2. Under these conditions, after five days Treg expanded up to 13 fold while maintaining high Foxp3 expression levels (85–90%). Longer expansion periods result in more T cell expansion but an overgrowth of Foxp3 negative T cells. In a mixed lymphocyte reaction assay, the ex-vivo expanded Treg efficiently suppressed the proliferation of alloreactive T cells. The expanded Treg were evaluated in an in vivo acute GVHD mouse model in direct comparison with freshly isolated Treg using a novel bioluminescent imaging assay that allowed for assessment of Tcon proliferation in addition to traditional metrics of GVHD severity including weight gain, survival and GVHD score. Initial experiments show that, similar to freshly isolated Treg, the ex-vivo expanded Treg suppress GVHD symptoms and improve survival, although a greater number of expanded Treg were required comparable to freshly isolated Treg. The mean GVHD score for the Tcon alone group was 5.8±1.02. Fresh Treg added at 1:1 ratio decreased the GVHD score to 0.75±0.25 (p=0.0036). Ex-vivo expanded Treg demonstrated a dose-dependent decrease in GVHD score, although four times more expanded Treg were needed to obtain a similar reduction in GVHD score (0.50±0.5, p=0.0036). This observed difference in potency was not due to the ex-vivo expanded Treg being short-lived when infused in mice. Bioluminescence imaging of luciferase positive (luc+) cultured Treg showed the same in vivo persistence as freshly isolated Treg. The ability to expand ex-vivo generated Treg is greater than the difference in potency, making ex-vivo expanded Treg potentially a viable option for treatment of GVHD, however, increased ratios of Treg:Tcon are likely to be required.


Sign in / Sign up

Export Citation Format

Share Document