scholarly journals Human Autoimmune Sera as Molecular Probes for the Identification of an Autoantigen Kinase Signaling Pathway

2002 ◽  
Vol 196 (9) ◽  
pp. 1213-1226 ◽  
Author(s):  
Makoto Kamachi ◽  
Truc M. Le ◽  
Susan J. Kim ◽  
Meghan E. Geiger ◽  
Paul Anderson ◽  
...  

Using human autoimmune sera as molecular probes, we previously described the association of phosphorylated serine/arginine splicing factors (SR splicing factors) with the U1-small nuclear ribonucleoprotein (U1-snRNP) and U3-small nucleolar RNP (snoRNP) in apoptotic cells. SR proteins are highly conserved autoantigens whose activity is tightly regulated by reversible phosphorylation of serine residues by at least eight different SR protein kinase kinases (SRPKs), including SRPK1, SRPK2, and the scleroderma autoantigen topoisomerase I. In this report, we demonstrate that only one of the known SRPKs, SRPK1, is associated with the U1-snRNP autoantigen complex in healthy and apoptotic cells. SRPK1 is activated early during apoptosis, followed by caspase-mediated proteolytic inactivation at later time points. SRPKs are cleaved in vivo after multiple apoptotic stimuli, and cleavage can be inhibited by overexpression of bcl-2 and bcl-xL, and by exposure to soluble peptide caspase inhibitors. Incubation of recombinant caspases with in vitro–translated SRPKs demonstrates that SRPK1 and SRPK2 are in vitro substrates for caspases-8 and -9, respectively. In contrast, topoisomerase I is cleaved by downstream caspases (-3 and -6). Since each of these SRPKs sits at a distinct checkpoint in the caspase cascade, SRPKs may serve an important role in signaling pathways governing apoptosis, alternative mRNA splicing, SR protein trafficking, RNA stability, and possibly the generation of autoantibodies directed against splicing factors.

2004 ◽  
Vol 24 (20) ◽  
pp. 9176-9185 ◽  
Author(s):  
Kai-Ti Lin ◽  
Ruei-Min Lu ◽  
Woan-Yuh Tarn

ABSTRACT A growing body of evidence supports the coordination of mRNA synthesis and its subsequent processing events. Nuclear proteins harboring both WW and FF protein interaction modules bind to splicing factors as well as RNA polymerase II and may serve to link transcription with splicing. To understand how WW domains coordinate the assembly of splicing complexes, we used glutathione S-transferase fusions containing WW domains from CA150 or FBP11 in pull-down experiments with HeLa cell nuclear extract. The WW domains associate preferentially with the U2 small nuclear ribonucleoprotein and with splicing factors SF1, U2AF, and components of the SF3 complex. Accordingly, WW domain-associating factors bind to the 3′ part of a pre-mRNA to form a pre-spliceosome-like complex. We performed both in vitro and in vivo splicing assays to explore the role of WW/FF domain-containing proteins in this process. However, although CA150 is associated with the spliceosome, it appears to be dispensable for splicing in vitro. Nevertheless, in vivo depletion of CA150 substantially reduced splicing efficiency of a reporter pre-mRNA. Moreover, overexpression of CA150 fragments containing both WW and FF domains activated splicing and modulated alternative exon selection, probably by facilitating 3′ splice site recognition. Our results suggest an essential role of WW/FF domain-containing factors in pre-mRNA splicing that likely occurs in concert with transcription in vivo.


1999 ◽  
Vol 145 (3) ◽  
pp. 447-455 ◽  
Author(s):  
Joanne M. Yeakley ◽  
Hélène Tronchère ◽  
James Olesen ◽  
Jacqueline A. Dyck ◽  
Huan-You Wang ◽  
...  

The SR superfamily of splicing factors and regulators is characterized by arginine/serine (RS)-rich domains, which are extensively modified by phosphorylation in cells. In vitro binding studies revealed that RS domain–mediated protein interactions can be differentially affected by phosphorylation. Taking advantage of the single nonessential SR protein–specific kinase Sky1p in Saccharomyces cerevisiae, we investigated RS domain interactions in vivo using the two-hybrid assay. Strikingly, all RS domain–mediated interactions were abolished by SKY1 deletion and were rescuable by yeast or mammalian SR protein–specific kinases, indicating that phosphorylation has a far greater impact on RS domain interactions in vivo than in vitro. To understand this dramatic effect, we examined the localization of SR proteins and found that SC35 was shifted to the cytoplasm in sky1Δ yeast, although this phenomenon was not obvious with ASF/SF2, indicating that nuclear import of SR proteins may be differentially regulated by phosphorylation. Using a transcriptional repression assay, we further showed that most LexA-SR fusion proteins depend on Sky1p to efficiently recognize the LexA binding site in a reporter, suggesting that molecular targeting of RS domain–containing proteins within the nucleus was also affected. Together, these results reveal multiple phosphorylation-dependent steps for SR proteins to interact with one another efficiently and specifically, which may ultimately determine the splicing activity and specificity of these factors in mammalian cells.


2021 ◽  
Author(s):  
Sarah R. Hansen ◽  
Ivan R Corrêa ◽  
Mark Scalf ◽  
Lloyd M. Smith ◽  
Aaron A Hoskins

In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used co-localization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.


1996 ◽  
Vol 16 (5) ◽  
pp. 2325-2331 ◽  
Author(s):  
R R Gontarek ◽  
D Derse

We examine here the roles of cellular splicing factors and virus regulatory proteins in coordinately regulating alternative splicing of the tat/rev mRNA of equine infectious anemia virus (EIAV). This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. In the absence of Rev expression, the four-exon mRNA is synthesized exclusively, but when Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. We identify a purine-rich exonic splicing enhancer (ESE) in exon 3 that promotes exon inclusion. Similar to other cellular ESEs that have been identified by other laboratories, the EIAV ESE interacted specifically with SR proteins, a group of serine/arginine-rich splicing factors that function in constitutive and alternative mRNA splicing. Substitution of purines with pyrimidines in the ESE resulted in a switch from exon inclusion to exon skipping in vivo and abolished binding of SR proteins in vitro. Exon skipping was also induced by expression of EIAV Rev. We show that Rev binds to exon 3 RNA in vitro, and while the precise determinants have not been mapped, Rev function in vivo and RNA binding in vitro indicate that the RNA element necessary for Rev responsiveness overlaps or is adjacent to the ESE. We suggest that EIAV Rev promotes exon skipping by interfering with SR protein interactions with RNA or with other splicing factors.


1999 ◽  
Vol 19 (10) ◽  
pp. 6991-7000 ◽  
Author(s):  
Jayendra Prasad ◽  
Karen Colwill ◽  
Tony Pawson ◽  
James L. Manley

ABSTRACT The splicing of mammalian mRNA precursors requires both protein phosphorylation and dephosphorylation, likely involving modification of members of the SR protein family of splicing factors. Several kinases have been identified that can phosphorylate SR proteins in vitro, and transfection assays have provided evidence that at least one of these, Clk/Sty, can modulate splicing in vivo. But evidence that a specific kinase can directly affect the splicing activity of SR proteins has been lacking. Here, by using purified recombinant Clk/Sty, a catalytically inactive mutant, and individual SR proteins, we show that Clk/Sty directly affects the activity of SR proteins, but not other essential splicing factors, in reconstituted splicing assays. We also provide evidence that both hyper- and hypophosphorylation inhibit SR protein splicing activity, repressing constitutive splicing and switching alternative splice site selection. These findings indicate that Clk/Sty directly and specifically influences the activity of SR protein splicing factors and, importantly, show that both under- and overphosphorylation of SR proteins can modulate splicing.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 485
Author(s):  
Veronika Huntosova ◽  
Denis Horvath ◽  
Robert Seliga ◽  
Georges Wagnieres

Detection of tissue and cell oxygenation is of high importance in fundamental biological and in many medical applications, particularly for monitoring dysfunction in the early stages of cancer. Measurements of the luminescence lifetimes of molecular probes offer a very promising and non-invasive approach to estimate tissue and cell oxygenation in vivo and in vitro. We optimized the evaluation of oxygen detection in vivo by [Ru(Phen)3]2+ in the chicken embryo chorioallantoic membrane model. Its luminescence lifetimes measured in the CAM were analyzed through hierarchical clustering. The detection of the tissue oxygenation at the oxidative stress conditions is still challenging. We applied simultaneous time-resolved recording of the mitochondrial probe MitoTrackerTM OrangeCMTMRos fluorescence and [Ru(Phen)3]2+ phosphorescence imaging in the intact cell without affecting the sensitivities of these molecular probes. [Ru(Phen)3]2+ was demonstrated to be suitable for in vitro detection of oxygen under various stress factors that mimic oxidative stress: other molecular sensors, H2O2, and curcumin-mediated photodynamic therapy in glioma cancer cells. Low phototoxicities of the molecular probes were finally observed. Our study offers a high potential for the application and generalization of tissue oxygenation as an innovative approach based on the similarities between interdependent biological influences. It is particularly suitable for therapeutic approaches targeting metabolic alterations as well as oxygen, glucose, or lipid deprivation.


NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Luisa Statello ◽  
Mohamad M Ali ◽  
Silke Reischl ◽  
Sagar Mahale ◽  
Subazini Thankaswamy Kosalai ◽  
...  

Abstract Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.


2012 ◽  
Vol 18 (1) ◽  
pp. 26-38 ◽  
Author(s):  
J. Jacob Strouse ◽  
Irena Ivnitski-Steele ◽  
Hadya M. Khawaja ◽  
Dominique Perez ◽  
Jerec Ricci ◽  
...  

Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)–driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented.


2007 ◽  
Vol 13 (2) ◽  
pp. 591-602 ◽  
Author(s):  
Archie N. Tse ◽  
Katherine G. Rendahl ◽  
Tahir Sheikh ◽  
Haider Cheema ◽  
Kim Aardalen ◽  
...  

1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


Sign in / Sign up

Export Citation Format

Share Document