scholarly journals Identification and Characterization of Helicobacter pylori Genes Essential for Gastric Colonization

2003 ◽  
Vol 197 (7) ◽  
pp. 813-822 ◽  
Author(s):  
Holger Kavermann ◽  
Brendan P. Burns ◽  
Katrin Angermüller ◽  
Stefan Odenbreit ◽  
Wolfgang Fischer ◽  
...  

Helicobacter pylori causes one of the most common, chronic bacterial infections and is a primary cause of severe gastric disorders. To unravel the bacterial factors necessary for the process of gastric colonization and pathogenesis, signature tagged mutagenesis (STM) was adapted to H. pylori. The Mongolian gerbil (Meriones unguiculatus) was used as model system to screen a set of 960 STM mutants. This resulted in 47 H. pylori genes, assigned to 9 different functional categories, representing a set of biological functions absolutely essential for gastric colonization, as verified and quantified for many mutants by competition experiments. Identification of previously known colonization factors, such as the urease and motility functions validated this method, but also novel and several hypothetical genes were found. Interestingly, a secreted collagenase, encoded by hp0169, could be identified and functionally verified as a new essential virulence factor for H. pylori stomach colonization. Furthermore, comB4, encoding a putative ATPase being part of a DNA transformation-associated type IV transport system of H. pylori was found to be absolutely essential for colonization, but natural transformation competence was apparently not the essential function. Thus, this first systematic STM application identified a set of previously unknown H. pylori colonization factors and may help to potentiate the development of novel therapies against gastric Helicobacter infections.

2006 ◽  
Vol 188 (3) ◽  
pp. 882-893 ◽  
Author(s):  
Arno Karnholz ◽  
Claudia Hoefler ◽  
Stefan Odenbreit ◽  
Wolfgang Fischer ◽  
Dirk Hofreuter ◽  
...  

ABSTRACT Helicobacter pylori is one of the most diverse bacterial species known. A rational basis for this genetic variation may be provided by its natural competence for genetic transformation and high-frequency recombination. Many bacterial competence systems have homology with proteins that are involved in the assembly of type IV pili and type II secretion systems. In H. pylori, DNA uptake relies on a transport system related to type IV secretion systems (T4SS) designated the comB system. The prototype of a T4SS in Agrobacterium tumefaciens consists of 11 VirB proteins and VirD4, which form the core unit necessary for the delivery of single proteins or large nucleoprotein complexes into target cells. In the past we identified proteins ComB4 and ComB7 through ComB10 as being involved in the process of DNA uptake in H. pylori. In this study we identified and functionally characterized further (T4SS-homologous) components of the comB transformation competence system. By combining computer prediction modeling, experimental topology determination, generation of knockout strains, and genetic complementation studies we identified ComB2, ComB3, and ComB6 as essential components of the transformation apparatus, structurally and functionally homologous to VirB2, VirB3, and VirB6, respectively. comB2, comB3, and comB4 are organized as a separate operon. Thus, for the H. pylori comB system, all T4SS core components have been identified except for homologues to VirB1, VirD4, VirB5, and VirB11.


2019 ◽  
Vol 19 (5) ◽  
pp. 376-382 ◽  
Author(s):  
Sachin Jangra ◽  
Gayathri Purushothaman ◽  
Kapil Juvale ◽  
Srimadhavi Ravi ◽  
Aishwarya Menon ◽  
...  

Background & Objective:Helicobacter pylori infection is one of the primary causes of peptic ulcer followed by gastric cancer in the world population. Due to increased occurrences of multi-drug resistance to the currently available antibiotics, there is an urgent need for a new class of drugs against H. pylori. Inosine 5′-monophosphate dehydrogenase (IMPDH), a metabolic enzyme plays a significant role in cell proliferation and cell growth. It catalyses guanine nucleotide synthesis. IMPDH enzyme has been exploited as a target for antiviral, anticancer and immunosuppressive drugs. Recently, bacterial IMPDH has been studied as a potential target for treating bacterial infections. Differences in the structural and kinetic parameters of the eukaryotic and prokaryotic IMPDH make it possible to target bacterial enzyme selectively.Methods:In the current work, we have synthesised and studied the effect of substituted 3-aryldiazenyl indoles on Helicobacter pylori IMPDH (HpIMPDH) activity. The synthesised molecules were examined for their inhibitory potential against recombinant HpIMPDH.Results:In this study, compounds 1 and 2 were found to be the most potent inhibitors amongst the database with IC50 of 0.8 ± 0.02µM and 1 ± 0.03 µM, respectively.Conclusion:When compared to the most potent known HpIMPDH inhibitor molecule C91, 1 was only four-fold less potent and can be a good lead for further development of selective and potent inhibitors of HpIMPDH.


1999 ◽  
Vol 67 (5) ◽  
pp. 2060-2070 ◽  
Author(s):  
Steffen Porwollik ◽  
Brian Noonan ◽  
Paul W. O’Toole

ABSTRACT Motility of Helicobacter species has been shown to be essential for successful colonization of the host. We have investigated the organization of a flagellar export locus in Helicobacter pylori. A 7-kb fragment of the H. pylori CCUG 17874 genome was cloned and sequenced, revealing an operon comprising an open reading frame of unknown function (ORF03), essential housekeeping genes (ileS and murB), flagellar export genes (fliI and fliQ), and a homolog to a gene implicated in virulence factor transport in other pathogens (virB11). A promoter for this operon, showing similarity to the Escherichia coli ς70 consensus, was identified by primer extension. Cotranscription of the genes in the operon was demonstrated by reverse transcription-PCR, and transcription of virB11, fliI, fliQ, andmurB was detected in human or mouse biopsies obtained from infected hosts. The genetic organization of this locus was conserved in a panel of H. pylori clinical isolates. EngineeredfliI and fliQ mutant strains were completely aflagellate and nonmotile, whereas a virB11 mutant still produced flagella. The fliI and fliQ mutant strains produced reduced levels of flagellin and the hook protein FlgE. Production of OMP4, a member of the outer membrane protein family identified in H. pylori 26695, was reduced in both thevirB11 mutant and the fliI mutant, suggesting related functions of the virulence factor export protein (VirB11) and the flagellar export component (FliI).


2019 ◽  
Author(s):  
Alfizah Hanafiah ◽  
Shaza Azlin Razak ◽  
Hui-min Neoh ◽  
Noraziah Mohamad Zin ◽  
Bruno S. Lopes

Abstract Background: Helicobacter pylori is a Gram-negative bacillus that colonises only the mucus layer of the human stomach and is implicated in gastric diseases. Virulent H. pylori harbouring cag-pathogenicity island (cagPAI) which encodes genes for type IV secretion system (T4SS) and CagA protein is one of the major virulence determinants involved in disease development. We examined the entire cagPAI genes in 95 H. pylori isolates from a multiracial population and examined the intactness of cagPAI region with histopathological scores of the gastric mucosa. Results: 95.8% of H. pylori isolates were cagPAI-positive with 23.2% having an intact cagPAI, whereas 72.6% had a partial/rearranged cagPAI. In our study, cag2 and cag4 were found to be significantly higher in H. pylori isolated from Malays, whereas cag4 was predominant in Chinese isolates. We also detected cag24 in significantly high proportion in isolates from the Malays and the Indians compared to the Chinese isolates. The intactness of cagPAI region showed an association with histopathological scores of the gastric mucosa. Significant association was observed between H. pylori harbouring partial cagPAI and higher density of H. pylori and neutrophil activity, whereas strains which lacked cagPAI was associated with higher inflammatory score. Conclusions: The screening of the entire cagPAI genes provides an accurate overview of the cagPAI organisation in H. pylori isolates in a multiracial population. The genotypes of H. pylori strains with various cagPAI rearrangement associated with patients’ ethnicities and histopathological scores might contribute to the pathogenesis of H. pylori infection in a multi-ethnic population.


2002 ◽  
Vol 43 (2) ◽  
pp. 307-322 ◽  
Author(s):  
Christine Josenhans ◽  
Eike Niehus ◽  
Stefanie Amersbach ◽  
Andrea Hörster ◽  
Christian Betz ◽  
...  

2005 ◽  
Vol 187 (10) ◽  
pp. 3374-3383 ◽  
Author(s):  
Christopher Stead ◽  
An Tran ◽  
Donald Ferguson ◽  
Sara McGrath ◽  
Robert Cotter ◽  
...  

ABSTRACT The lipid A domain anchors lipopolysaccharide (LPS) to the outer membrane and is typically a disaccharide of glucosamine that is both acylated and phosphorylated. The core and O-antigen carbohydrate domains are linked to the lipid A moiety through the eight-carbon sugar 3-deoxy-d-manno-octulosonic acid known as Kdo. Helicobacter pylori LPS has been characterized as having a single Kdo residue attached to lipid A, predicting in vivo a monofunctional Kdo transferase (WaaA). However, using an in vitro assay system we demonstrate that H. pylori WaaA is a bifunctional enzyme transferring two Kdo sugars to the tetra-acylated lipid A precursor lipid IVA. In the present work we report the discovery of a Kdo hydrolase in membranes of H. pylori capable of removing the outer Kdo sugar from Kdo2-lipid A. Enzymatic removal of the Kdo group was dependent upon prior removal of the 1-phosphate group from the lipid A domain, and mass spectrometric analysis of the reaction product confirmed the enzymatic removal of a single Kdo residue by the Kdo-trimming enzyme. This is the first characterization of a Kdo hydrolase involved in the modification of gram-negative bacterial LPS.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
William E. Sause ◽  
Daniela Keilberg ◽  
Soufiane Aboulhouda ◽  
Karen M. Ottemann

ABSTRACT The human pathogen Helicobacter pylori uses the host receptor α5β1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5β1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5β1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell β1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.


2005 ◽  
Vol 39 (2) ◽  
pp. 221-229 ◽  
Author(s):  
A Bleich ◽  
I Köhn ◽  
S Glage ◽  
W Beil ◽  
S Wagner ◽  
...  

The Mongolian gerbil is an excellent animal model for Helicobacter pylori-induced gastritis in humans. In this study, initially low colonization rates of the H. pylori strains ATCC 43504, SS1, or HP87 inoculated into gerbils caused difficulties in establishing this model. In order to increase the colonization ability and pathogenicity, the clinical HP87 isolate was selected for adaptation to the gerbil stomach by multiple in vivo passages through gerbils. Development of gastritis was examined histologically at 4–52 weeks after infection. The proportion of gerbils which tested positive for H. pylori by culture at four weeks after inoculation gradually increased from 11.1% of gerbils inoculated with HP87 without prior in vivo passage (P0) to 100% of gerbils inoculated with HP87 with seven in vivo passages (P7). In addition, adaptation of HP87 resulted in more severe histopathological changes. Gerbils infected with adapted HP87 (P7) exhibited severe infiltration by monomorphonuclear and polymorphonuclear leukocytes in the mucosa, submucosa, and subserosa of the gastric antrum, as well as epithelial changes consisting of hyperplasia, erosion, and ulceration. Histopathological changes increased in severity from four to 52 weeks after infection. Adaptation of HP87 during its passages through gerbils could be due to genetic changes in bacterial colonization factors. Identification of these changes might be useful to understand the underlying mechanism of gastric adaptation and pathogenesis of H. pylori.


Sign in / Sign up

Export Citation Format

Share Document