scholarly journals Expansion of Melanoma-specific Cytolytic CD8+ T Cell Precursors in Patients with Metastatic Melanoma Vaccinated with CD34+ Progenitor-derived Dendritic Cells

2004 ◽  
Vol 199 (11) ◽  
pp. 1503-1511 ◽  
Author(s):  
Sophie Paczesny ◽  
Jacques Banchereau ◽  
Knut M. Wittkowski ◽  
Giovanna Saracino ◽  
Joseph Fay ◽  
...  

Cancer vaccines aim at inducing (a) tumor-specific effector T cells able to reduce/eliminate the tumor mass, and (b) long-lasting tumor-specific memory T cells able to control tumor relapse. We have shown earlier, in 18 human histocompatibility leukocyte antigen (HLA)-A*0201 patients with metastatic melanoma, that vaccination with peptide-loaded CD34–dendritic cells (DCs) leads to expansion of melanoma-specific interferon γ–producing CD8+ T cells in the blood. Here, we show in 9 out of 12 analyzed patients the expansion of cytolytic CD8+ T cell precursors specific for melanoma differentiation antigens. These precursors yield, upon single restimulation with melanoma peptide–pulsed DCs, cytotoxic T lymphocytes (CTLs) able to kill melanoma cells. Melanoma-specific CTLs can be grown in vitro and can be detected in three assays: (a) melanoma tetramer binding, (b) killing of melanoma peptide–pulsed T2 cells, and (c) killing of HLA-A*0201 melanoma cells. The cytolytic activity of expanded CTLs correlates with the frequency of melanoma tetramer binding CD8+ T cells. Thus, CD34-DC vaccines can expand melanoma-specific CTL precursors that can kill melanoma antigen–expressing targets. These results justify the design of larger follow-up studies to assess the immunological and clinical response to peptide-pulsed CD34-DC vaccines.

2010 ◽  
Vol 207 (1) ◽  
pp. 223-235 ◽  
Author(s):  
Sadna Budhu ◽  
John D. Loike ◽  
Ashley Pandolfi ◽  
Soo Han ◽  
Geoffrey Catalano ◽  
...  

We describe a quantitative model for assessing the cytolytic activity of antigen-specific CD8+ T cells in vitro and in vivo in which the concentration of antigen-specific CD8+ T cells determines the efficiency with which these cells kill cognate antigen–expressing melanoma cells in packed cell pellets, in three-dimensional collagen-fibrin gels in vitro, and in established melanomas in vivo. In combination with a clonogenic assay for melanoma cells, collagen-fibrin gels are 4,500–5,500-fold more sensitive than the packed cell pellet–type assays generally used to measure CD8+ T cell cytolytic activity. An equation previously used to describe neutrophil bactericidal activity in vitro and in vivo also describes antigen-specific CD8+ T cell–mediated cytolysis of cognate antigen-expressing melanoma cells in collagen-fibrin gels in vitro and in transplanted tumors in vivo. We have used this equation to calculate the critical concentration of antigen-specific CD8+ T cells, which is the concentration of these cells required to hold constant the concentration of a growing population of cognate antigen-expressing melanoma cells. It is ∼3.5 × 105/ml collagen-fibrin gel in vitro and ∼3 × 106/ml or /g melanoma for previously published studies of ex vivo–activated adoptively transferred tumor antigen–specific CD8+ T cell killing of cognate antigen–expressing melanoma cells in established tumors in vivo. The antigen-specific CD8+ T cell concentration required to kill 100% of 2 × 107/ml cognate antigen-expressing melanoma cells in collagen fibrin gels is ≥107/ml of gel.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 213-223 ◽  
Author(s):  
Karl Peggs ◽  
Stephanie Verfuerth ◽  
Arnold Pizzey ◽  
Jenni Ainsworth ◽  
Paul Moss ◽  
...  

Under conditions of impaired T-cell immunity, human cytomegalovirus (HCMV) can reactivate from lifelong latency, resulting in potentially fatal disease. A crucial role for CD8+ T cells has been demonstrated in control of viral replication, and high levels of HCMV-specific cytotoxic T-lymphocytes are seen in immunocompetent HCMV-seropositive individuals despite very low viral loads. Elucidation of the minimum portion of the anti-HCMV T-cell repertoire that is required to suppress viral replication requires further study of clonal composition. The ability of dendritic cells to take up and process exogenous viral antigen by constitutive macropinocytosis was used to study HCMV-specific T-cell memory in the absence of viral replication. The specificity and clonal composition of the CD8+ T-cell responses were evaluated using HLA tetrameric complexes and T-cell receptor β chain (TCRBV) spectratypic analyses. There was a skewed reactivity toward the matrix protein pp65, with up to 40-fold expansion of CD8+ T cells directed toward a single peptide-MHC combination. Individual expansions detected on TCRBV spectratype analysis were HCMV-specific and composed of single or highly restricted numbers of clones. There was preferential TCRBV gene usage (BV6.1/6.2, BV8, and BV13 in HLA-A*0201+ individuals) but lack of conservation of CDR3 length and junctional motifs between donors. While there was a spectrum of TCR repertoire diversity directed toward individual MHC-peptide combinations between donors, a relatively small number of clones appeared to predominate the response in each case. These data provide further insight into the range of anti-HCMV responses and will aid the design and monitoring of adoptive immunotherapy protocols.


2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


Rheumatology ◽  
2019 ◽  
Vol 59 (1) ◽  
pp. 224-232
Author(s):  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Akito Takamura ◽  
Naoki Kimura ◽  
Kimito Kawahata ◽  
...  

Abstract Objectives The hallmark histopathology of PM is the presence of CD8+ T cells in the non-necrotic muscle cells. The aim of this study was to clarify the pathological significance of CD8+ T cells in muscle cells. Methods C2C12 cells were transduced retrovirally with the genes encoding MHC class I (H2Kb) and SIINFEKL peptide derived from ovalbumin (OVA), and then differentiated to myotubes (H2KbOVA-myotubes). H2KbOVA-myotubes were co-cultured with OT-I CD8+ T cells derived from OVA-specific class I restricted T cell receptor transgenic mice as an in vitro model of PM to examine whether the CD8+ T cells invade into the myotubes and if the myotubes with the invasion are more prone to die than those without. Muscle biopsy samples from patients with PM were examined for the presence of CD8+ T cells in muscle cells. The clinical profiles were compared between the patients with and without CD8+ T cells in muscle cells. Results Analysis of the in vitro model of PM with confocal microscopy demonstrated the invasion of OT-I CD8+ T cells into H2KbOVA-myotubes. Transmission electron microscopic analysis revealed an electron-lucent area between the invaded CD8+ T cell and the cytoplasm of H2KbOVA-myotubes. The myotubes invaded with OT-I CD8+ T cells died earlier than the uninvaded myotubes. The level of serum creatinine kinase was higher in patients with CD8+ T cells in muscle cells than those without these cells. Conclusion CD8+ T cells invade into muscle cells and contribute to muscle injury in PM. Our in vitro model of PM is useful to examine the mechanisms underlying muscle injury induced by CD8+ T cells.


Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


1997 ◽  
Vol 186 (9) ◽  
pp. 1407-1418 ◽  
Author(s):  
Dörte Hamann ◽  
Paul A. Baars ◽  
Martin H.G. Rep ◽  
Berend Hooibrink ◽  
Susana R. Kerkhof-Garde ◽  
...  

Human CD8+ memory- and effector-type T cells are poorly defined. We show here that, next to a naive compartment, two discrete primed subpopulations can be found within the circulating human CD8+ T cell subset. First, CD45RA−CD45R0+ cells are reminiscent of memory-type T cells in that they express elevated levels of CD95 (Fas) and the integrin family members CD11a, CD18, CD29, CD49d, and CD49e, compared to naive CD8+ T cells, and are able to secrete not only interleukin (IL) 2 but also interferon γ, tumor necrosis factor α, and IL-4. This subset does not exert cytolytic activity without prior in vitro stimulation but does contain virus-specific cytotoxic T lymphocyte (CTL) precursors. A second primed population is characterized by CD45RA expression with concomitant absence of expression of the costimulatory molecules CD27 and CD28. The CD8+CD45RA+CD27− population contains T cells expressing high levels of CD11a, CD11b, CD18, and CD49d, whereas CD62L (L-selectin) is not expressed. These T cells do not secrete IL-2 or -4 but can produce IFN-γ and TNF-α. In accordance with this finding, cells contained within this subpopulation depend for proliferation on exogenous growth factors such as IL-2 and -15. Interestingly, CD8+CD45RA+CD27− cells parallel effector CTLs, as they abundantly express Fas-ligand mRNA, contain perforin and granzyme B, and have high cytolytic activity without in vitro prestimulation. Based on both phenotypic and functional properties, we conclude that memory- and effector-type T cells can be separated as distinct entities within the human CD8+ T cell subset.


Sign in / Sign up

Export Citation Format

Share Document