scholarly journals CD8+ T cell concentration determines their efficiency in killing cognate antigen–expressing syngeneic mammalian cells in vitro and in mouse tissues

2010 ◽  
Vol 207 (1) ◽  
pp. 223-235 ◽  
Author(s):  
Sadna Budhu ◽  
John D. Loike ◽  
Ashley Pandolfi ◽  
Soo Han ◽  
Geoffrey Catalano ◽  
...  

We describe a quantitative model for assessing the cytolytic activity of antigen-specific CD8+ T cells in vitro and in vivo in which the concentration of antigen-specific CD8+ T cells determines the efficiency with which these cells kill cognate antigen–expressing melanoma cells in packed cell pellets, in three-dimensional collagen-fibrin gels in vitro, and in established melanomas in vivo. In combination with a clonogenic assay for melanoma cells, collagen-fibrin gels are 4,500–5,500-fold more sensitive than the packed cell pellet–type assays generally used to measure CD8+ T cell cytolytic activity. An equation previously used to describe neutrophil bactericidal activity in vitro and in vivo also describes antigen-specific CD8+ T cell–mediated cytolysis of cognate antigen-expressing melanoma cells in collagen-fibrin gels in vitro and in transplanted tumors in vivo. We have used this equation to calculate the critical concentration of antigen-specific CD8+ T cells, which is the concentration of these cells required to hold constant the concentration of a growing population of cognate antigen-expressing melanoma cells. It is ∼3.5 × 105/ml collagen-fibrin gel in vitro and ∼3 × 106/ml or /g melanoma for previously published studies of ex vivo–activated adoptively transferred tumor antigen–specific CD8+ T cell killing of cognate antigen–expressing melanoma cells in established tumors in vivo. The antigen-specific CD8+ T cell concentration required to kill 100% of 2 × 107/ml cognate antigen-expressing melanoma cells in collagen fibrin gels is ≥107/ml of gel.

2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


1997 ◽  
Vol 186 (9) ◽  
pp. 1407-1418 ◽  
Author(s):  
Dörte Hamann ◽  
Paul A. Baars ◽  
Martin H.G. Rep ◽  
Berend Hooibrink ◽  
Susana R. Kerkhof-Garde ◽  
...  

Human CD8+ memory- and effector-type T cells are poorly defined. We show here that, next to a naive compartment, two discrete primed subpopulations can be found within the circulating human CD8+ T cell subset. First, CD45RA−CD45R0+ cells are reminiscent of memory-type T cells in that they express elevated levels of CD95 (Fas) and the integrin family members CD11a, CD18, CD29, CD49d, and CD49e, compared to naive CD8+ T cells, and are able to secrete not only interleukin (IL) 2 but also interferon γ, tumor necrosis factor α, and IL-4. This subset does not exert cytolytic activity without prior in vitro stimulation but does contain virus-specific cytotoxic T lymphocyte (CTL) precursors. A second primed population is characterized by CD45RA expression with concomitant absence of expression of the costimulatory molecules CD27 and CD28. The CD8+CD45RA+CD27− population contains T cells expressing high levels of CD11a, CD11b, CD18, and CD49d, whereas CD62L (L-selectin) is not expressed. These T cells do not secrete IL-2 or -4 but can produce IFN-γ and TNF-α. In accordance with this finding, cells contained within this subpopulation depend for proliferation on exogenous growth factors such as IL-2 and -15. Interestingly, CD8+CD45RA+CD27− cells parallel effector CTLs, as they abundantly express Fas-ligand mRNA, contain perforin and granzyme B, and have high cytolytic activity without in vitro prestimulation. Based on both phenotypic and functional properties, we conclude that memory- and effector-type T cells can be separated as distinct entities within the human CD8+ T cell subset.


2017 ◽  
Vol 214 (6) ◽  
pp. 1593-1606 ◽  
Author(s):  
Hossam A. Abdelsamed ◽  
Ardiana Moustaki ◽  
Yiping Fan ◽  
Pranay Dogra ◽  
Hazem E. Ghoneim ◽  
...  

Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.


2013 ◽  
Vol 210 (7) ◽  
pp. 1463-1479 ◽  
Author(s):  
Salvador Iborra ◽  
Manuel Ramos ◽  
David M. Arana ◽  
Silvia Lázaro ◽  
Francisco Aguilar ◽  
...  

Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate.


2018 ◽  
Vol 20 (5) ◽  
pp. 621-638
Author(s):  
O. I. Stepanova ◽  
D. O. Bazhenov ◽  
E. V. Khokhlova ◽  
I. Yu. Kogan ◽  
D. I. Sokolov ◽  
...  

At the present time, a broad spectrum of CD8+ T lymphocyte subsets is revealed, including naïve cells, memory cells and regulatory subpopulations. Along with cells with high cytolytic activity, some subsets with marked regulatory activity were found there. Each subpopulation is characterized by a set of produced mediators, surface and intracellular markers allowing to suggest their differential in vivo functional activity. The present review article proposes a classification of CD8+ Т cells which takes into account their morphological and functional features. According to conventional view, the CD8+ Т lymphocytes is a cell population exhibiting high cytotoxic ability which is of critical significance in pregnancy, under the conditions of semi-allogenic fetal cell invasion into the endometrium. The fraction of CD8+ T cells is rather high in decidual structures. The review discusses the known mechanisms of differentiation regulation, selective migration and activity of CD8+ T cells in decidual membrane and placenta in the course of pregnancy. Perforine and granzyme are the main cytotoxicity factors of CD8+ Т cells. IL-2, IL-5, IL-13, IFNγ, IL-17, TGF-β and IL-10 cytokines are considered regulatory mediators of CD8+ cells. To induce the effector properties of CD8+ T cells, an antigenic stimulation is required, which is provided by interactions between the CD8+ Т cells and activated CD4+ Т cells or dendritic cells, cytokine effects. Specific differentiation of the CD8+ T cells is determined by differences in microenvironvent. In the course of pregnancy, accumulation of CD8+ Т cells is observed in decidual membrane, but their phenotype and functional properties differ from CD8+ Т cells in peripheral blood. At present time, the mechanisms of selective CD8+ T cell migration to decidual membrane are studied. These events are suggested to be mediated by means of CXCR3 and CCR5 chemokine receptors, IL-6 and IL-15 cytokines. The features of CD8+ Т cell activities, and production of some cytokines, e.g., CSF2, IFNγ, IL-1β, IL-2, IL-6, IL-8,IL-10, IL-12 and TNFα in decidual membrane and is of critical significance for effective invasion of trophoblast cells. In turn, the trophoblast and placental cells promote development of regulatory CD8+ Т lymphocytes in decidual membrane, being able to induce CD8+ T cell apoptosis in decidual membrane. Hence, interaction between the maternal CD8+ T cells and trophoblast in the area of uterine-placental contact is an important link during development of immunological tolerance in the maternal/fetal system.


Open Biology ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190235 ◽  
Author(s):  
Stephanie J. Crowley ◽  
Patrick T. Bruck ◽  
Md Aladdin Bhuiyan ◽  
Amelia Mitchell-Gears ◽  
Michael J. Walsh ◽  
...  

Cancer-specific mutations can lead to peptides of unique sequence presented on MHC class I to CD8 T cells. These neoantigens can be potent tumour-rejection antigens, appear to be the driving force behind responsiveness to anti-CTLA-4 and anti-PD1/L1-based therapies and have been used to develop personalized vaccines. The platform for delivering neoantigen-based vaccines has varied, and further optimization of both platform and adjuvant will be necessary to achieve scalable vaccine products that are therapeutically effective at a reasonable cost. Here, we developed a platform for testing potential CD8 T cell tumour vaccine candidates. We used a high-affinity alpaca-derived VHH against MHC class II to deliver peptides to professional antigen-presenting cells. We show in vitro and in vivo that peptides derived from the model antigen ovalbumin are better able to activate naive ovalbumin-specific CD8 T cells when conjugated to an MHC class II-specific VHH when compared with an irrelevant control VHH. We then used the VHH-peptide platform to evaluate a panel of candidate neoantigens in vivo in a mouse model of pancreatic cancer. None of the candidate neoantigens tested led to protection from tumour challenge; however, we were able to show vaccine-induced CD8 T cell responses to a melanoma self-antigen that was augmented by combination therapy with the synthetic cytokine mimetic Neo2/15.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 639 ◽  
Author(s):  
Younghyun Lim ◽  
Seyoung Kim ◽  
Sehoon Kim ◽  
Dong-In Kim ◽  
Kyung Won Kang ◽  
...  

The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.


2005 ◽  
Vol 201 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Rong Zeng ◽  
Rosanne Spolski ◽  
Steven E. Finkelstein ◽  
SangKon Oh ◽  
Panu E. Kovanen ◽  
...  

Interleukin (IL)-21 is the most recently recognized of the cytokines that share the common cytokine receptor γ chain (γc), which is mutated in humans with X-linked severe combined immunodeficiency. We now report that IL-21 synergistically acts with IL-15 to potently promote the proliferation of both memory (CD44high) and naive (CD44low) phenotype CD8+ T cells and augment interferon-γ production in vitro. IL-21 also cooperated, albeit more weakly, with IL-7, but not with IL-2. Correspondingly, the expansion and cytotoxicity of CD8+ T cells were impaired in IL-21R−/− mice. Moreover, in vivo administration of IL-21 in combination with IL-15 boosted antigen-specific CD8+ T cell numbers and resulted in a cooperative effect on tumor regression, with apparent cures of large, established B16 melanomas. Thus, our studies reveal that IL-21 potently regulates CD8+ T cell expansion and effector function, primarily in a synergistic context with IL-15.


2007 ◽  
Vol 204 (8) ◽  
pp. 1803-1812 ◽  
Author(s):  
Daisuke Kamimura ◽  
Michael J. Bevan

An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1349
Author(s):  
Chun-Chia Cheng ◽  
Yi-Fang Chang ◽  
Ai-Sheng Ho ◽  
Zong-Lin Sie ◽  
Jung-Shan Chang ◽  
...  

Irradiation-broken DNA fragments increase type I interferon and chemokines secretion in tumor cells. Since radiotherapy may augment tumor immunotherapy, we hypothesize that the chemokines increased by irradiation could recruit CD8+ T cells to suppress tumor proliferation. This study intended to unveil the secreted factors activating and recruiting CD8+ T cells in non-small-cell lung cancer (NSCLC). EGFR-positive A549 was selected and treated by X-irradiation (IR) to identify the overexpression of chemokines associated to CD8+ T cell cytotoxicity and recruitment. A transwell assay with Alexa 488-labeled CD8+ T cells was used to evaluate CD8+ T cell motility in vitro. A nuclear imaging platform by In111-labeled nivolumab was used to track CD8+ T cells homing to tumors in vivo. The activation markers GZMB, PRF-1, and IFNγ, migration marker CD183 (CXCR3), and inhibitory marker CD274 (PD-1), were measured and compared in CD8+ T cells with A549 co-cultured, chemokines treated, and patients with late-stage lung cancer. We found that IR not only suppressed A549 proliferation but also induced IFNα and CXCL9 expression (p < 0.05). IFNα majorly increased IFNγ levels in CD8+ T cells (p < 0.05) and synergistically with CXCL9 enhanced CD8+ T cell migration in vitro (p < 0.05). We found that CXCR3 and PD-1 were down-regulated and up-regulated, respectively, in the peripheral blood CD8+ T cells in patients with lung cancer (n = 4 vs. healthy n = 3, both p < 0.05), which exhibited reduction of cell motility (p < 0.05). The in vivo nuclear imaging data indicated highly CD8+ T cells migrated to A549-induced tumors. In addition, we demonstrated that healthy PBMCs significantly suppressed the parallel tumor growth (p < 0.05) and the radioresistant tumor growth in the tumor xenograft mice (p < 0.05), but PBMCs from patients with lung cancer had lost the anti-tumor capacity. We demonstrated that IR induced IFNα and CXCL9 expression in A549 cells, leading to CD8+ T cell migration. This study unveiled a potential mechanism for radiotherapy to activate and recruit CD8+ T cells to suppress lung tumors.


Sign in / Sign up

Export Citation Format

Share Document