scholarly journals LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration

2005 ◽  
Vol 201 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Lixin Liu ◽  
Denise C. Cara ◽  
Jaswinder Kaur ◽  
Eko Raharjo ◽  
Sarah C. Mullaly ◽  
...  

Leukocyte-specific protein 1 (LSP1), an F-actin binding protein and a major downstream substrate of p38 mitogen-activated protein kinase as well as protein kinase C, has been reported to be important in leukocyte chemotaxis. Although its distribution has been thought to be restricted to leukocytes, herein we report that LSP1 is expressed in endothelium and is essential to permit neutrophil emigration. Using intravital microscopy to directly visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in LSP1-deficient (Lsp1−/−) mice, we found that LSP1 deficiency inhibits neutrophil extravasation in response to various cytokines (tumor necrosis factor-α and interleukin-1β) and to neutrophil chemokine keratinocyte-derived chemokine in vivo. LSP1 deficiency did not affect leukocyte rolling or adhesion. Generation of Lsp1−/− chimeric mice using bone marrow transplantation revealed that in mice with Lsp1−/− endothelial cells and wild-type leukocytes, neutrophil transendothelial migration out of postcapillary venules is markedly restricted. In contrast, Lsp1−/− neutrophils in wild-type mice were able to extravasate normally. Consistent with altered endothelial function was a reduction in vascular permeability to histamine in Lsp1−/− animals. Western blot analysis and immunofluorescence microscopy examination confirmed the presence of LSP1 in wild-type but not in Lsp1−/− mouse microvascular endothelial cells. Cultured human endothelial cells also stained positive for LSP1. Our results suggest that LSP1 expressed in endothelium regulates neutrophil transendothelial migration.

2009 ◽  
Vol 77 (4) ◽  
pp. 1569-1578 ◽  
Author(s):  
Jong-Hwan Park ◽  
Yun-Gi Kim ◽  
Gabriel Núñez

ABSTRACT RICK (receptor-interacting protein-like interacting caspase-like apoptosis regulatory protein kinase), a serine-threonine kinase, functions downstream of the pattern recognition receptors Nod1 and Nod2 to mediate NF-κB and mitogen-activated protein kinase (MAPK) activation in response to specific microbial stimuli. However, the function of RICK in the recognition and host defense of gram-negative bacteria remains poorly understood. We report here that infection of wild-type and RICK-deficient macrophages with Pseudomonas aeruginosa and Escherichia coli elicited comparable activation of NF-κB and MAPKs as well as secretion of proinflammatory cytokines. However, production of interleukin 6 (IL-6) and IL-1β induced by these gram-negative bacteria was impaired in RICK-deficient macrophages when the cells had previously been stimulated with lipopolysaccharide (LPS) or E. coli. The diminished proinflammatory response of RICK-deficient macrophages to bacteria was associated with reduced activation of NF-κB and MAPKs. Importantly, mutant mice deficient in RICK were less susceptible than wild-type mice to P. aeruginosa infection when the animals had previously been stimulated with LPS. The reduced lethality of RICK-deficient mice infected with P. aeruginosa was independent of pathogen clearance but was associated with diminished production of proinflammatory molecules in vivo. These results demonstrate that RICK contributes to the induction of proinflammatory responses and susceptibility to gram-negative bacteria after exposure to LPS, a condition that is associated with reduced Toll-like receptor signaling.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4592-4600 ◽  
Author(s):  
Robert C. Doebele ◽  
Frank T. Schulze-Hoepfner ◽  
Jia Hong ◽  
Alexandre Chlenski ◽  
Benjamin D. Zeitlin ◽  
...  

Abstract Tumors depend upon angiogenesis for growth and metastasis. It is therefore critical to understand the inhibitory signaling mechanisms in endothelial cells that control angiogenesis. Epac is a cyclic adenosine 5′-monophosphate–activated guanine nucleotide exchange factor for Rap1. In this study, we show that activation of Epac or Rap1 leads to potent inhibition of angiogenesis in vivo. Epac/Rap1 activation down-regulates inhibitor of differentiation 1 (Id1), which negatively regulates thrombospondin-1 (TSP1), an inhibitor of angiogenesis. Consistent with this mechanism, activation of Epac/Rap 1 induces expression of TSP1; conversely, depletion of Epac reduces TSP1 levels in endothelial cells. Blockade of TSP1 binding to its receptor, CD36, rescues inhibition of chemotaxis or angiogenesis by activated Epac/Rap1. Mitogen-activated protein kinase kinase 5, a downstream mediator of vascular endothelial growth factor, antagonizes the effects of Epac/Rap1 by inducing Id1 and suppressing TSP1 expression. Finally, TSP1 is also secreted by fibroblasts in response to Epac/Rap1 activation. These results identify Epac and Rap1 as inhibitory regulators of the angiogenic process, implicate Id1 and TSP1 as downstream mediators of Epac/Rap1, and highlight a novel interplay between pro- and antiangiogenic signaling cascades involving multiple cell types within the angiogenic microenvironment.


2008 ◽  
Vol 411 (3) ◽  
pp. 613-622 ◽  
Author(s):  
Maria Perander ◽  
Espen Åberg ◽  
Bjarne Johansen ◽  
Bo Dreyer ◽  
Ingrid J. Guldvik ◽  
...  

ERK (extracellular-signal-regulated kinase) 4 [MAPK (mitogen-activated protein kinase) 4] and ERK3 (MAPK6) are atypical MAPKs. One major difference between these proteins and the classical MAPKs is substitution of the conserved T-X-Y motif within the activation loop by a single phospho-acceptor site within an S-E-G motif. In the present study we report that Ser186 of the S-E-G motif in ERK4 is phosphorylated in vivo. Kinase-dead ERK4 is also phosphorylated on Ser186, indicating that an ERK4 kinase, rather than autophosphorylation, is responsible. Co-expression of MK5 [MAPK-activated protein kinase 5; also known as PRAK (p38-regulated/activated kinase)], a physiological target of ERK4, increases phosphorylation of Ser186. This is not dependent on MK5 activity, but does require interaction between ERK4 and MK5 suggesting that MK5 binding either prevents ERK4 dephosphorylation or facilitates ERK4 kinase activity. ERK4 mutants in which Ser186 is replaced with either an alanine residue or a phospho-mimetic residue (glutamate) are unable to activate MK5 and Ser186 is also required for cytoplasmic anchoring of MK5. Both defects seem to reflect an impaired ability of the ERK4 mutants to interact with MK5. We find that there are at least two endogenous pools of wild-type ERK4. One form exhibits reduced mobility when analysed using SDS/PAGE. This is due to MK5-dependent phosphorylation and only this retarded ERK4 species is both phosphorylated on Ser186 and co-immunoprecipitates with wild-type MK5. We conclude that binding between ERK4 and MK5 facilitates phosphorylation of Ser186 and stabilization of the ERK4–MK5 complex. This results in phosphorylation and activation of MK5, which in turn phosphorylates ERK4 on sites other than Ser186 resulting in the observed mobility shift.


2010 ◽  
Vol 427 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Kentaro Nakagawa ◽  
Misato Sugahara ◽  
Tokiwa Yamasaki ◽  
Hiroaki Kajiho ◽  
Shinya Takahashi ◽  
...  

SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) belongs to the MAPK (mitogen-activated protein kinase) family and is important in many biological contexts. JNK activation is regulated by phosphorylation of specific tyrosine and threonine residues sequentially catalysed by MKK4 and MKK7, which are both dual-specificity MAPKKs (MAPK kinases). Previously, we reported that tyrosine-phosphorylation of JNK by MKK4 precedes threonine-phosphorylation by MKK7, and that both are required for synergistic JNK activation. In the present study, we identify the actin-binding protein-280 (Filamin A) as a presumed ‘binder’ protein that can bind to MKK7, as well as to MKK4, connecting them in close proximity. We show that Filamin family members A, B and C interact with MKK4 and MKK7, but not with JNK. Filamin A binds to an N-terminal region (residues 31–60) present in the MKK7γ and MKK7β splice isoforms, but cannot bind to MKK7α which lacks these amino acids. This same N-terminal region is crucial for the intracellular co-localization of MKK7γ with actin stress fibres and Filamin A. Experiments using Filamin-A-deletion mutants revealed that the MKK7-binding region of Filamin A differs from its MKK4-binding region, and that MKK7γ (but not MKK7α) can form a complex with Filamin A and MKK4. Finally, we used Filamin-A-deficient cells to show that Filamin A enhances MKK7 activation and is important for synergistic stress-induced JNK activation in vivo. Thus Filamin A is a novel member of the group of scaffold proteins whose function is to link two MAPKKs together and promote JNK activation.


2000 ◽  
Vol 352 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Yvonne FLEMING ◽  
Christopher G. ARMSTRONG ◽  
Nick MORRICE ◽  
Andrew PATERSON ◽  
Michel GOEDERT ◽  
...  

Stress-activated protein kinase 1 (SAPK1), also called c-Jun N-terminal kinase (JNK), becomes activated in vivo in response to pro-inflammatory cytokines or cellular stresses. Its full activation requires the phosphorylation of a threonine and a tyrosine residue in a Thr-Pro-Tyr motif, which can be catalysed by the protein kinases mitogen-activated protein kinase kinase (MKK)4 and MKK7. Here we report that MKK4 shows a striking preference for the tyrosine residue (Tyr-185), and MKK7 a striking preference for the threonine residue (Thr-183) in three SAPK1/JNK1 isoforms tested (JNK1α1, JNK2α2 and JNK3α1). For this reason, MKK4 and MKK7 together produce a synergistic increase in the activity of each SAPK1/JNK isoform in vitro. The MKK7β variant, which is several hundred-fold more efficient in activating all three SAPK1/JNK isoforms than is MKK7α´, is equally specific for Thr-183. MKK7 also phosphorylates JNK2α2 at Thr-404 and Ser-407 in vitro, Ser-407 being phosphorylated much more rapidly than Thr-183 in vitro. Thr-404/Ser-407 are phosphorylated in unstimulated human KB cells and HEK-293 cells, and phosphorylation is increased in response to an osmotic stress (0.5M sorbitol). However, in contrast with Thr-183 and Tyr-185, the phosphorylation of Thr-404 and Ser-407 is not increased in response to other agonists that activate MKK7 and SAPK1/JNK, suggesting that phosphorylation of these residues is catalysed by another protein kinase, such as CK2, which also phosphorylates Thr-404 and Ser-407 in vitro. MKK3, MKK4 and MKK6 all show a strong preference for phosphorylation of the tyrosine residue of the Thr-Gly-Tyr motifs in their known substrates SAPK2a/p38, SAPK3/p38γ and SAPK4/p38δ. MKK7 also phosphorylates SAPK2a/p38 at a low rate (but not SAPK3/p38γ or SAPK4/p38δ), and phosphorylation occurs exclusively at the tyrosine residue, demonstrating that MKK7 is intrinsically a ‘dual-specific’ protein kinase.


2004 ◽  
Vol 72 (10) ◽  
pp. 5662-5667 ◽  
Author(s):  
Nicola J. Mason ◽  
Jim Fiore ◽  
Takashi Kobayashi ◽  
Katherine S. Masek ◽  
Yongwon Choi ◽  
...  

ABSTRACT The production of interleukin-12 (IL-12) is critical to the development of innate and adaptive immune responses required for the control of intracellular pathogens. Many microbial products signal through Toll-like receptors (TLR) and activate NF-κB family members that are required for the production of IL-12. Recent studies suggest that components of the TLR pathway are required for the production of IL-12 in response to the parasite Toxoplasma gondii; however, the production of IL-12 in response to this parasite is independent of NF-κB activation. The adaptor molecule TRAF6 is involved in TLR signaling pathways and associates with serine/threonine kinases involved in the activation of both NF-κB and mitogen-activated protein kinase (MAPK). To elucidate the intracellular signaling pathways involved in the production of IL-12 in response to soluble toxoplasma antigen (STAg), wild-type and TRAF6−/− mice were inoculated with STAg, and the production of IL-12(p40) was determined. TRAF6−/− mice failed to produce IL-12(p40) in response to STAg, and TRAF6−/− macrophages stimulated with STAg also failed to produce IL-12(p40). Studies using Western blot analysis of wild-type and TRAF6−/− macrophages revealed that stimulation with STAg resulted in the rapid TRAF6-dependent phosphorylation of p38 and extracellular signal-related kinase, which differentially regulated the production of IL-12(p40). The studies presented here demonstrate for the first time that the production of IL-12(p40) in response to toxoplasma is dependent upon TRAF6 and p38 MAPK.


2013 ◽  
Vol 111 (3) ◽  
pp. 452-464 ◽  
Author(s):  
Gina Cecilia Pistol ◽  
Mihail Alexandru Gras ◽  
Daniela Eliza Marin ◽  
Florentina Israel-Roming ◽  
Mariana Stancu ◽  
...  

Zearalenone (ZEA) is an oestrogenic mycotoxin produced byFusariumspecies, considered to be a risk factor from both public health and agricultural perspectives. In the presentin vivostudy, a feeding trial was conducted to evaluate thein vivoeffect of a ZEA-contaminated diet on immune response in young pigs. The effect of ZEA on pro-inflammatory (TNF-α, IL-8, IL-6, IL-1β and interferon-γ) and anti-inflammatory (IL-10 and IL-4) cytokines and other molecules involved in inflammatory processes (matrix metalloproteinases (MMP)/tissue inhibitors of matrix metalloproteinases (TIMP), nuclear receptors: PPARγ and NF-κB1, mitogen-activated protein kinases (MAPK): mitogen-activated protein kinase kinase kinase 7 (TAK1)/mitogen-activated protein kinase 14 (p38α)/mitogen-activated protein kinase 8 (JNK1)/ mitogen-activated protein kinase 9 (JNK2)) in the liver of piglets was investigated. The present results showed that a concentration of 316 parts per billion ZEA leads to a significant decrease in the levels of pro- and anti-inflammatory cytokines at both gene expression and protein levels, correlated with a decrease in the levels of other inflammatory mediators, MMP and TIMP. The results also showed that dietary ZEA induces a dramatic reduction in the expressions ofNF-κB1andTAK1/p38αMAPK genes in the liver of the experimentally intoxicated piglets, and has no effect on the expression ofPPARγmRNA. The present results suggest that the toxic action of ZEA begins in the upstream of the MAPK signalling pathway by the inhibition of TAK1, a MAPK/NF-κB activator. In conclusion, the present study shows that ZEA alters several important parameters of the hepatic cellular immune response. From an economic point of view, these data suggest that, in pigs, ZEA is not only a powerful oestrogenic mycotoxin but also a potential hepatotoxin when administered through the oral route. Therefore, the present results represent additional data from cellular and molecular levels that could be taken into account in the determination of the regulation limit of the tolerance to ZEA.


Sign in / Sign up

Export Citation Format

Share Document