scholarly journals O-acetylated N-acetylneuraminic acid as a novel target for therapy in human pre-B acute lymphoblastic leukemia

2013 ◽  
Vol 210 (4) ◽  
pp. 805-819 ◽  
Author(s):  
Reshmi Parameswaran ◽  
Min Lim ◽  
Anna Arutyunyan ◽  
Hisham Abdel-Azim ◽  
Christian Hurtz ◽  
...  

The development of resistance to chemotherapy is a major cause of relapse in acute lymphoblastic leukemia (ALL). Though several mechanisms associated with drug resistance have been studied in detail, the role of carbohydrate modification remains unexplored. Here, we investigated the contribution of 9-O-acetylated N-acetylneuraminic acid (Neu5Ac) to survival and drug resistance development in ALL cells. A strong induction of 9-O-acetylated Neu5Ac including 9-O-acetyl GD3 was detected in ALL cells that developed resistance against vincristine or nilotinib, drugs with distinct cytotoxic mechanisms. Removal of 9-O-acetyl residues from Neu5Ac on the cell surface by an O-acetylesterase made ALL cells more vulnerable to such drugs. Moreover, removal of intracellular and cell surface–resident 9-O-acetyl Neu5Ac by lentiviral transduction of the esterase was lethal to ALL cells in vitro even in the presence of stromal protection. Interestingly, expression of the esterase in normal fibroblasts or endothelial cells had no effect on their survival. Transplanted mice induced for expression of the O-acetylesterase in the ALL cells exhibited a reduction of leukemia to minimal cell numbers and significantly increased survival. This demonstrates that Neu5Ac 9-O-acetylation is essential for survival of these cells and suggests that Neu5Ac de-O-acetylation could be used as therapy to eradicate drug-resistant ALL cells.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2565-2565
Author(s):  
Eun Ji Gang ◽  
Yao-Te Hsieh ◽  
Huimin Geng ◽  
Jennifer Pham ◽  
Markus Muschen ◽  
...  

Abstract Abstract 2565 Chemotherapy drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem, resulting in reduced treatment efficacy and relapse. The bone marrow environment (BME) has been shown to promote resistance of leukemia cells towards chemotherapy, which has been attributed to several proteins, including integrins. Our analysis of 207 children with high-risk (BCR/ABL1−) pre-B ALL revealed that high expression of the laminin-binding integrin VLA6 (alpha6beta1) portends poor clinical outcomes in patients with minimal residual disease (MRD+) on day 29 of induction. In addition, our comparative analysis of pre-B leukemia and normal B-cells revealed that VLA6 is preferentially upregulated on BCR/ABL1+ pre-B ALL blasts. Alterations in adhesion properties have been described for BCR/ABL1+ (p210) chronic myeloid leukemia. The role of integrins and integrin VLA6 in particular for cell adhesion-mediated drug resistance (CAM-DR) in BCR/ABL1+ (p210) ALL has not been addressed. With respect to its role for normal immature hematopoietic cells, contradictory observations have been reported. Therefore, we hypothesized that VLA6-mediated adhesion of ALL cells to the bone marrow stromal niche contributes to drug resistance. We evaluated the role of VLA6 in BCR-ABL1+ leukemia using two of our established models of leukemia, a conditional knockout model of VLA6 in murine BCR-ABL1+ leukemia and a xenograft model of human BCR-ABL1+ leukemia. VLA6fl/fl cells were oncogenically transformed using BCR-ABL1 (p210) and cultured under lymphoid-skewing conditions. Induction of pre- B (B220+ CD19+) ALL was confirmed by flow cytometry. Subsequent transduction with CreERT2 or EmptyERT2 generated leukemia cells in which VLA6 ablation could be induced (CreERT2) or not (EmptyERT2) by addition of Tamoxifen. Conditional ablation of VLA6 in vitro decreased adhesion significantly compared to undeleted controls (19.7%±8.1% vs. 87.7%±6.0%; p=0.00041) and increased apoptosis of murine BCR-ABL1+ leukemia cells as determined by analysis of Annexin V−/7-AAD− viable cells by flow cytometry (VLA6 deleted vs. undeleted: 35.3%±1.1% vs. 75.1%±1.2%; p=0.0001). Moreover, VLA6 deletion sensitized murine ALL to a tyrosine kinase inhibitor (TKI), Nilotinib (p=0.022, 45.6%±2.4% vs. 73.3%±13.0%). To test the effect of VLA6 deletion on leukemic progression in vivo, VLA6 BCR/ABL1+ pre-B (B220+ CD19+) CreERT2+ or control transduced ALL cells were transferred into NOD/SCID mice. 3 days thereafter, VLA6 deletion was induced by Tamoxifen administration to all animals in 2 cycles for 5 days. In vivo deletion of VLA6 in delayed leukemia progression compared to VLA6 competent controls from a median survival time (MST) of 30 days post-leukemia injection to a MST of 43 days post-leukemia injection (p=0.008 Log-rank test). In vivo deletion of VLA6 in combination with Nilotinib treatment delayed leukemia progression compared to VLA6 competent, as Nilotinib-treated control animals have uniformly died of leukemia with a MST of 39.5 days, however the Nilotinib treated VLA6 deleted group is completely alive and is still being monitored (p=0.0025). When VLA6 was ablated before transfer and recipients were observed for leukemia progression, the recipients of VLA6–deficient murine leukemia cells also showed attenuated leukemia progression compared to recipients of VLA6 competent cells. Moreover, we show that VLA6 blockade de-adheres primary ALL cells from their cognate counter receptor laminin in vitro, and sensitizes primary ALL cells to TKI Taken together, modulating the function of VLA6 in ALL offers a new approach to overcome drug resistance in ALL. Given that VLA6 is probably largely redundant for normal immature hematopoiesis, this approach may be preferable over targeting of other integrins in BCR/ABL1+ leukemias on which VLA6 is expressed. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2004 ◽  
Vol 18 (3) ◽  
pp. 521-529 ◽  
Author(s):  
N L Ramakers-van Woerden ◽  
H B Beverloo ◽  
A J P Veerman ◽  
B M Camitta ◽  
A H Loonen ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4252-4258 ◽  
Author(s):  
TW McLean ◽  
S Ringold ◽  
D Neuberg ◽  
K Stegmaier ◽  
R Tantravahi ◽  
...  

Abstract Polymerase chain reaction-based screening of childhood acute lymphoblastic leukemia (ALL) samples showed that a TEL/AML1 fusion transcript was detected in 27% of all cases, representing the most common known gene rearrangement in childhood cancer. The TEL/AML1 fusion results from a t(12;21)(p13;q22) chromosomal translocation, but was undetectable at the routine cytogenetic level. TEL/AML1-positive patients had exclusively B-lineage ALL, and most patients were between the ages of 2 and 9 years at diagnosis. Only 3/89 (3.4%) adult ALL patients were TEL/AML1-positive. Most importantly, TEL/AML1-positive children had a significantly lower rate of relapse compared with TEL/AML1-negative patients (0/22 v 16/54, P = .004). Co- immunoprecipitation experiments demonstrated that TEL/AML-1 formed homodimers in vitro, and heterodimerized with the normal TEL protein when the two proteins were expressed together. The elucidation of the precise mechanism of transformation by TEL/AML1 and the role of TEL/AML1 testing in the treatment of childhood ALL will require additional studies.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3861-3868 ◽  
Author(s):  
E Klumper ◽  
R Pieters ◽  
AJ Veerman ◽  
DR Huismans ◽  
AH Loonen ◽  
...  

Cellular drug resistance is thought to be an important cause of the poor prognosis for children with relapsed or refractory acute lymphoblastic leukemia (ALL), but it is unknown when, to which drugs, and to what extent resistance is present. We determined in vitro resistance to 13 drugs with the MTT assay. Compared with 141 children with initial ALL, cells from 137 children with relapsed ALL were significantly more resistant to glucocorticoids, L-asparaginase, anthracyclines, and thiopurines, but not to vinca-alkaloids, cytarabine, ifosfamide, and epipodophyllotoxins. Relapsed ALL cells expressed the highest level of resistance to glucocorticoids, with a median level 357- and >24-fold more resistant to prednisolone and dexamethasone, respectively, than initial ALL cells, whereas the resistance ratios for the other drugs differed from 0.8- to 1.9-fold, intraindividual comparisons between initial and relapsed samples from 16 children with ALL showed that both de novo and acquired drug resistance were involved. Specific in vitro drug-resistance profiles were associated with high-risk relapsed ALL groups. In vitro drug resistance was also related to the clinical response to chemotherapy in relapsed/refractory childhood ALL. We conclude that drug resistance may explain the poor prognosis for children with relapsed/refractory ALL. These day may be helpful to design alternative treatment regimens for relapsed childhood ALL.


Author(s):  
M. Yu. Skorkina ◽  
N. I. Zhernakova ◽  
T. S. Shevchenko ◽  
A. S. Zelentsova

The current study is devoted to the investigation of the biophysical properties of the cell surface and the functional activity of granulocytes in patients with acute lymphoblastic leukemia when simulating the ATP load in vitro. The experiment was performed on the peripheral blood of patients with acute lymphoblastic leukemia (ALL) who underwent a standard course of chemotherapy. In experimental tests, exogenous loading with ATP was simulated in vitro by adding 100.0 μM adenosine-5-triphosphate disodium salt trihydrate to the granulocyte suspension. Incubation with the drug was carried out for 15 min at 370 C. As a control, a suspension of granulocytes in RPMI 1640 medium from the same patient, but without the addition of the drug, was used, this was incubated for 15 min at a temperature of 370 C. After the incubation time, the biophysical properties (rigidity, charge of the cell surface, the strength of intercellular adhesion) of granulocytes in experimental and control samples were studied using atomic force microscopy, and the migration activity of cells was also assessed in a direct capillary test under agarose. A model with exogenous ATP in ALL patients showed a decrease in the rigidity and potential of the plasma membrane surface, an increase in the adhesive properties and migration activity of granulocytes. The revealed effects point to the key role of the ATP molecule in the mechanisms of intercellular signaling in the microvasculature.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2765-2765 ◽  
Author(s):  
Yongsheng Ruan ◽  
Eun Ji Gang ◽  
Hye-Na Kim ◽  
Chintan Parekh ◽  
Hisham Abdel-Azim ◽  
...  

Abstract Background. Even though remarkable progress has been made in the treatment of childhood acute lymphoblastic leukemia (ALL), salvage of relapse patients remains a challenge. The role of the bone marrow (BM) microenvironment is critical to protect leukemia cells from chemotherapy. The BM microenvironment promotes cell adhesion-mediated drug resistance (CAM-DR) in ALL.We and others have shown that the adhesion molecule integrin α4, referred to hereafter as α4, mediates drug resistance of B-ALL. In our previous studies, we showed that both α4 blockade by natalizumab and inhibition by the small molecule α4 antagonist TBC3486 can sensitize relapsed ALL cells to chemotherapy. However, no α4 targeting therapy is currently clinically available to treat leukemia. Here, we preclinically evaluate a novel non-peptidic small molecule antagonist, AVA4746, which has been safely used in clinical studies, as a potential new approach to combat drug resistant ALL. Method. Six refractory or relapsed primary pre-B ALL cases were used for in vitro studies. Viability was assessed by trypan blue counts or annexin V/7AAD flow cytometric analysis and metabolic activity was evaluated by Cytoscan WST-1 assay. For in vivo evaluation a NOD/SCID IL2Rγ-/- xenograft model of primary pre-B ALL (LAX7R) was used.AVA4746 (15mg/kg) was administered by oral gavage twice a day continuously for 14 days, and vincristine, dexamethasone, L-asparaginase (VDL) was given intraperitoneally (weekly) for 4 weeks. Overall survival was determined by Kaplan-Meier Survival analysis. Results. AVA4746 caused a significant decrease in mean fluorescence intensity (MFI) of α4 expression in six out of six ALL cases at doses of both 5μM and 25μM after 24 hours and 96 hours compared to DMSO control. Interestingly, decreased protein expression of α4 was also observed by Western Blot analysis all six ALL cases. We tested next in two cases (LAX53, ICN13), if AVA4746 de-adheres ALL cells from its counter receptor VCAM-1. The percentages of adherence after treatment with AVA4746 (25μM) were significantly lower than after DMSO treatment (10.3%±4.9% vs. 99.9%±7.6%, p= 0.00007 for LAX7R; 8.1%±1.0% vs. 100.1%±13.6%, p= 0.0003 for LAX53; 9.0%±1.6% vs. 100.0%±14.0%, p=0.0004 for ICN13). AVA4746 was not associated with apoptosis in vitro alone or in combination with chemotherapy (VDL). Metabolic activity as assessed by WST-1 assay was markedly decreased by AVA4746 in two of two ALL cases. AVA4746 also decreased ALL proliferation in two out of two ALL samples tested. In vivo, AVA4746 in combination with VDL chemotherapy treatment led to significant prolongation of overall survival (n=6) compared with the VDL only treated group (n=6) (MST= 78.5 days vs MST= 68 days; P<0.05). There was no significant difference in survival between the PBS control group (n=5) and the AVA4746 mono-treatment group (n=5) (MST=38days vs MST= 38days). Conclusion. We have identified α4 as a central adhesion molecule in CAM-DR of ALL and have shown that AVA-4746, an orally available and specific α4 antagonist, which has been safely used in clinical studies, downregulates α4 in primary ALL and functionally de-adheres them from VCAM-1. Critically, we demonstrated that inhibition of α4 in combination with standard chemotherapy can prolong the survival of NSG mice bearing pre-B ALL. These data support further study of inhibition of α4 using AVA4746 as a novel strategy to treat drug resistant B lineage ALL. Disclosures Bhojwani: Amgen: Other: Blinatumumab global pediatric advisory board 2015. Wayne:Spectrum Pharmaceuticals: Honoraria, Other: Travel Support, Research Funding; Kite Pharma: Honoraria, Other: Travel support, Research Funding; Pfizer: Consultancy, Honoraria, Other: Travel Support; Medimmune: Honoraria, Other: Travel Support, Research Funding; NIH: Patents & Royalties. Kim:Antisense Therapeutics Ltd: Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5058-5058
Author(s):  
Jianda Hu ◽  
Yanxin Chen ◽  
Zhengjun Wu ◽  
Lingyan Wang ◽  
Jingjing Wen ◽  
...  

Chemotherapy resistance is considered to be the principal cause of ineffective treatment in acute lymphoblastic leukemia (ALL). Nucleolin (NCL) is high expression andplays oncogenic roles in most cancers. However, less research on the role of NCL in hematologic malignancies was noted. Our previous studies have showed that overexpression of NCL was associated with worse prognosis in the patients with acute leukemia and NCL expressionwashigher in resistant HL-60/ADR than in sensitive HL-60 cells. The potential mechanisms of NCL in chemotherapy resistance have yet to be revealed. Here we presented that expression of NCL was associated positively with chemotherapy resistance and poor prognosis in ALL. Overexpressed NCL at both mRNA and protein level was relevant to a poorer overall survival (OS) and relapse free survival (RFS), indicating NCL as an independent prognostic marker in ALL. mRNA level of NCL in de novo ALL was quantitatively higher than in complete remission(CR) status, and refractory/relapse ALL had the highest level. Upon above clinical data, we further investigated the mechanism(s) by which NCL regulated drug resistance in ALL cells. Remarkably, NCL expression was higher in resistant ALL cells relative to sensitive parental cells. When treated with ADM, NCL level was decreased in sensitive parental cells while unchanged in resistant cells. Overexpressing NCL suppressed drug sensitivity, altered drug effluxion and decreased intracellular drug accumulation, while inhibition of NCL led to a completely reversed appearance, more intracellular Adriamycin(ADM) mean fluorescence intensity (MFI) and percentage of ADM accumulated cells population. Overexpression of NCL increased significantly the IC50 of ADM. The IC50 of ADM on Jurkat-NCL-overexpression(OE), Jurkat-NCL-knockdown(KD), Molt-4-NCL-OE, Molt-4-NCL-KD, Nalm-6-NCL-OE, Nalm-6-NCL-KD were 1.362±0.271μg/ml, 0.077±0.010μg/ml, 4.863±0.733μg/ml, 0.081±0.018μg/ml, 0.237±0.042μg/ml and 0.046±0.002μg/ml, respectively (P <0.05). Involvement of ATP-binding cassette (ABC) transporters was proved in NCL mediated drug resistance. Silencing NCL resulted in a decrease of P-gp, MRP1, LRP and BCRP in ALL cells, and NCL overexpression increased the MRP1, LRP and BCRP. The Akt/mTOR and ERK signaling pathways were involved in this procedure. Notably, co-IP assays confirmed the NCL-Ras, NCL-ERK and NCL-BCRP interaction. For intervention study, aptamer AS1411, a NCL inhibitor, could reduce drug resistance in ALL cell lines and primary ALL cells.Moreover, AS1411 treatment decreased BCRP protein expression. Furthermore, the ALL leukemia models that nude mice engrafted with Nalm-6 cells and NCG mice engrafted with Luc+ Nalm-6 cells were established, then treated with ADM plus AS1411 or control CRO for comparison drug sensitivity and survival. Growth of subcutaneous xenograft tumors was inhibited in those treated with AS1411 or ADM, compared to their respective controls treated with CRO or PBS. The stronger inhibition effect was observed in those treated with AS1411 combined with ADM. For Luc+Nalm-6 derived ALL model, leukemia progression was suppressed in mice treated with AS1411 and AS1411 combined with ADM. AS1411and ADM, especially combination of AS1411 and ADM, could improve survival of the leukemic mice compared to those treated with PBS. The results showed that NCL targeted by AS1411 sensitized ADM treatment and prolonged survival in vivo. In summary, our findings revealed NCL as a survival predictor and the novel role of NCL in ALL chemo-resistance. NCL may be a potential target for improving outcome in ALL. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 6580-6580
Author(s):  
Ofelia Crombet Ramos ◽  
Claudia Hernandez ◽  
Kevin Morrow ◽  
John T. Cole ◽  
Paulo Rodriguez

6580 Background: Advances in therapies have resulted in an overall complete remission rate of approximately 85% for childhood acute lymphoblastic leukemia (ALL). In contrast, the overall remission rate of adults with leukemia continues to be poor, only about 40% in cases of T cell-ALL (T-ALL). Therefore, it is imperative to generate new therapies that alone or in combination with other treatments could potentially increase the percentages of complete responders or be used to treat the refractory ALL population. Our published results show that a pegylated form of human arginase I (peg-Arg I) prevented T-ALL cell proliferation in vitro and in vivo through the induction of tumor cell apoptosis. Interestingly, the anti-leukemic effects induced by peg-Arg I did not affect the anti-tumor activity of normal T cells, suggesting an anti-tumor specific effect. Our hypothesis states that peg-Arg I has an anti-tumoral effect on B-ALL and T-ALL cells in vitro and that the sensitivity of ALL cells to peg-Arg I depends on their expression of argininosuccinate synthase (ASS) and their ability to produce L-arginine de novo from citrulline. Methods: Malignant T cell proliferation was tested using nonradioactive cell proliferation yellow tretrazolium salt kit. Apoptosis studies were based on the expression of annexin V. Western blot assays were conducted to determine enzymatic expression in different cell lines. Results: The results of our in vitro experiments showed that peg-Arg I had a pro-apoptotic and anti-proliferattive effect on B-ALL cells similar to the one previously seen on T-ALL cells. These effects can be overcome in cell lines able that express ASS and therefore to produce L-arginine de novo. Conclusions: Our results suggest the role of ASS in the ALL-apoptosis induced by peg-Arg-I. Our next steps include: _Understand why ASS-expressing ALL cells do not undergo apoptosis when cultured with peg-Arg-I_Determine the role of ASS in the anti-leukemic effect induced by peg-Arg-I in vivo. Completion of this research is expected to lead to a better understanding of how peg-Arg-I kills ALL cells and could provide the foundation for a novel therapy for ALL patients.


Sign in / Sign up

Export Citation Format

Share Document