scholarly journals Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations

2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 92-92 ◽  
Author(s):  
Xiaosheng Wu ◽  
Renee C. Tschumper ◽  
Albert Gutierrez ◽  
Stephen A. Mihalcik ◽  
Grzegorz S. Nowakowski ◽  
...  

Abstract Abstract 92 BACKGROUND: All somatic cell types, including all B lineage cells, constitutively express a number of DNA repair proteins to maintain genomic stability and thwart tumorigenesis in the face of ongoing constitutive levels of DNA damage. Compromises in expression of these essential DNA repair factors have been shown to readily induce the development of various cancers including B cell lymphomas, suggesting expression levels are tightly regulated and limited in quantity. In germinal center (GC) B cells, however, additional DNA repair capacity is likely required to counterbalance the heightened level of mutagenic activity owing to the induced expression of activation-induced cytidine deaminase (AID) during somatic hypermutation (SHM). AID is a DNA editing enzyme which introduces somatic mutations into immunoglobulin (Ig) V regions at an estimated rate which is almost a million-fold higher than the spontaneous rate in somatic cells. HYPOTHESIS: We hypothesize that to maintain the genomic wellness of GC B cells which are undergoing SHM, there is a need for induction of an accompanying robust DNA repair system. We further hypothesize that inefficient induction of these repair genes may predispose to malignant transformation. METHODS: Using tonsillar tissue sections and purified tonsillar B cell subpopulations, we compared expression levels of various DNA repair genes and related these levels to AID expression across the subsets using immunohistochemistry, real-time RT-PCR, and Western blot analysis. To characterize the nature of signals capable of inducing expression levels of AID and/or DNA repair proteins, peripheral blood B cells were activated in vitro using a panel of stimuli, including coculture with activated CD4 T cells. As a surrogate measure of mismatch repair (MMR) activity in the relative absence of T cell help, we quantitated the number of somatic hypermutations at A/T sites in the Ig heavy chain variable (IGHV) region genes in a collection of IGHV sequences obtained from normal B cells and HIV-related lymphoma cells. RESULTS: Using immunohistochemistry, we observed that, similar to the expression of AID, DNA MMR genes are significantly induced in tonsillar GC B cells. These results were further validated using a more sensitive real-time RT-PCR assay and analysis by Western blotting. By expanding our DNA repair gene panel, we observed that proteins of homologous recombination, base excision repair and DNA single strand break signalling pathway are also similarly induced in GC B cells at RNA, protein, and functional levels compared to their expression in naïve and memory B cells. By contrast, expression of non-homologous end joining and DNA double strand break signalling molecules are unchanged. We have termed this selective induction of repair mechanisms in GC B cells as somatic hyperrepair (SHR). To identify pathways that lead to the activation of AID and SHR, we used an in vitro system and a variety of stimuli and we discovered that multiple B cell stimuli including CpG, CD40L, and anti-BCR could each independently induce the expression of AID while SHR induction strictly required the engagement of CD4+ T cells. This provocative observation suggests a novel role for CD4+ T cells in mitigating tumorigenesis of post-GC B cells through their ability to induce the SHR pathway in cells that have been induced to undergo SHM. To demonstrate the possible role of SHR in lymphomagenesis, we analysed the mutation pattern of IGHV genes from a panel of B cell lymphomas obtained from HIV infected (CD4+ T cell suppressed) patients. We found that HIV-related lymphoma cells displayed a significantly lower frequency of SHM at A/T positions relative to normal memory B cells, indicative of compromised MMR of their precursor cells during GC transit. Our findings resolve the lingering paradox that B cell malignancies are overwhelmingly prevalent under T cell suppression conditions such as HIV infection, post-organ transplant, and aging. Finally, our results also suggest for the first time that mounting efficient tumor suppression for some cells may depend on signals transmitted by neighboring cells and the specific microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2330-2330
Author(s):  
Constantijn J.M. Halkes ◽  
Inge Jedema ◽  
Judith Olde Wolbers ◽  
Esther M van Egmond ◽  
Peter A. Von Dem Borne ◽  
...  

Abstract Abstract 2330 In vivo T cell depletion with anti-thymocyte globulin (ATG) or alemtuzumab (anti-CD52) before reduced intensity allogeneic stem cell transplantation (alloSCT) in combination with in vitro T cell depletion with alemtuzumab reduces the risk of GVHD. Detectable levels of circulating antibodies are present up to several months after the alloSCT, leading to a delayed immune reconstitution which is associated with an increased incidence of opportunistic infections and early relapses. Prior to 2007, combined in vitro (Alemtuzumab 20 mg added “to the bag”) and in vivo T cell depletion with horse-derived ATG (h-ATG) resulted in good engraftment without GVHD in the absence of GVHD prophylaxis after reduced intensity alloSCT using conditioning with fludarabine and busulphan. Due to the unavailability of h-ATG, rabbit-derived ATG (r-ATG) 10–14 mg/kg was introduced in the conditioning regimen in 2007. Strikingly, in this cohort of patients, early EBV reactivation and EBV-associated post-transplantation lymphoproliferative disease (PTLD) was observed in 10 out of 18 patients at a median time of 6 weeks after alloSCT (range 5 to 11 weeks) in the absence of GVHD or immunosuppressive treatment. Analysis of T and B cell recovery early after transplantation revealed preferential depletion of T cells as compared to B cells, thereby allowing unrestricted proliferation of EBV infected B cells. Due to this unacceptable high incidence of EBV-related complications, in the conditioning regimen r-ATG was replaced by low dose alemtuzumab (15 mg i.v. day -4 and -3) in 2008. In this cohort of 60 patients, only 2 patients experienced transient EBV reactivation during the first 3 months after alloSCT and one patient developed an EBV-associated lymphoma 4 weeks after alloSCT. To investigate the mechanisms underlying the low incidence of EBV reactivation using alemtuzumab for T cell depletion, we studied the in vivo and in vitro effects of alemtuzumab on different lymphocyte subsets. First, lineage-specific reconstitution was studied in 20 patients from the alemtuzumab cohort with known CD52 negative diseases (11 AML and 9 multiple myeloma) to exclude the confounding effect of antibody absorption by malignant cells. Whereas at 3 weeks after alloSCT detectable numbers of circulating NK cells and T cells were observed (medians 71 (range 6–378), and 12 (range 1–1164)E6/L, respectively), no circulating B cells could be detected (median 0, range 0–1 E6/L). At 6 weeks after alloSCT, NK and T cell numbers further increased (medians 212 (52-813), and 130 (range 25–1509)E6/L, respectively), whereas B cell numbers still remained low in the majority of patients (median 15, range 0–813E6/L). In all patients, T cells were detectable before the appearance of circulating B cells. Furthermore, the expression of CD52 and the sensitivity to alemtuzumab-mediated complement-dependent cell lysis (CDC) of B cells, T cells and NK cells was measured in vitro. The highest CD52 expression was observed on B cells (mean fluorescence intensity (MFI) 120), resulting in 95% lysis after incubation with 10ug/mL alemtuzumab and rabbit complement. NK cells showed a significantly lower CD52 expression (MFI 41), which was also reflected by a lower susceptibility to alemtuzumab-mediated CDC (62% lysis). Interestingly, differential expression of CD52 was observed on CD4 and CD8 T cells (MFI 120 and 101, respectively). Cytotoxicity analysis revealed relative protection of CD8 compared to CD4 T cells against alemtuzumab-mediated CDC, resulting in 52% and 90% lysis, respectively. Based on these results, we investigated in detail the presence and phenotype of the CD4 and CD8 subsets and EBV-specific CD8 T cells using tetramer staining at 6 weeks after alloSCT. In accordance with the in-vitro expression and susceptibility data, circulating CD52+ CD8 T cells including EBV-specific T cells were detectable. Interestingly, the majority of circulating CD4 T cells (64-93%, n=4) lacked CD52 expression, explaining their capacity to persist in the presence of alemtuzumab. We conclude that in vivo and in vitro T cell depletion with alemtuzumab is associated with a relatively low risk of EBV-associated PTLD because of efficient B cell depletion and persistent EBV immunity allowed by the relative insusceptibility for alemtuzumab of CD8 T cells and the development of CD52 negative escape variants of CD4 T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


2021 ◽  
Vol 118 (46) ◽  
pp. e2108157118
Author(s):  
Kerstin Narr ◽  
Yusuf I. Ertuna ◽  
Benedict Fallet ◽  
Karen Cornille ◽  
Mirela Dimitrova ◽  
...  

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)–driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called “decimation,” of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I–driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell–intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell–mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell–based vaccination against persistent viral diseases.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3343-3349 ◽  
Author(s):  
BK Link ◽  
GJ Weiner

Abstract Bispecific monoclonal antibodies (bsabs) recognizing both CD3 and a tumor antigen can redirect T-cell-mediated cytotoxicity toward cells bearing that antigen. Such bsabs have been shown to be more effective than monospecific monoclonal antibodies (MoAbs) at preventing tumor growth in animal models of B-cell malignancy. The current studies describe the production and preliminary evaluation of a bsab designed to induce the lysis of malignant human B cells by human T cells. The bsab was obtained from a hybrid-hybridoma cell line produced by fusing OKT3-secreting hybridoma cells with hybridoma cells that secrete 1D10. 1D10 is an MoAb that recognizes an antigen found on a majority of malignant human B cells that has not been detected to a significant degree on normal resting or activated lymphocytes. High performance liquid chromatography (HPLC) was used to separate bsab from monospecific antibodies that were also present in the hybrid-hybridoma antibody product. The bsab was then evaluated in vitro for its ability to induce lysis of malignant B cells by activated T cells. The bsab consistently induced extensive lysis in vitro of 1D10 (+) cells, including both cell lines and cells obtained from patients with a variety of B-cell malignancies. No such effect was seen with activated T cells alone or activated T cells with monospecific antibody. No increased lysis was seen with 1D10 (-) cell lines. The bsab also mediated lysis of malignant B cells by autologous T cells. We conclude bsab containing an OKT3 arm and a 1D10 arm can induce T-cell-mediated lysis in a manner that is both potent and specific. This supports further evaluation of this bsab as a potential immunotherapy of B-cell malignancy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2668-2668
Author(s):  
Abdul Tawab ◽  
Yoshiyuki Takahashi ◽  
Childs Richard ◽  
Kurlander J. Roger

Abstract In vitro stimulation of human peripheral blood B cells with recombinant IL-4 and CD40 ligand (CD40L) markedly increases their expression of MHC and costimulatory molecules, thus enhancing antigenic peptide presentation to T cells. Because these cells proliferate extensively in vitro (unlike monocytes or dendritic cells), they represent a promising and convenient reagent for the generation and maintenance of antigen-specific T cells for use in a variety of experimental or therapeutic settings. However, the impact of this type of B cell APC on cytokine production by responder T cells has hitherto not been examined. To address this issue, we stimulated normal human T cells with either allogeneic B cells (generated in vitro) or with MNCs obtained from the same donor. After 7 days, T cells were washed and re-challenged with the same APCs. The resulting alloreactive cytokine response was measured using quantitative ELISPOT methods and expressed as the frequencies of IFN-γ, IL-4, and IL-5 producing cells per thousand responder cells added. B cell- and MNC-primed cell lines both produced vigorous lymphokine responses, but B cell-stimulated T cells consistently produced more IL-5 spots (mean of 265 vs. 98/1000 responders, p<0.002) and fewer IFN-γ spots (163 vs 386/1000 cells, p<0.005) than MNC-stimulated cells. Further, the ratio of IFN-γ to IL-5 spots was almost ten-fold lower in B cell-stimulated cultures compared to MNC-induced cultures (0.67 vs. 5.2, p<0.001). ELISPOT studies assessing the ratio of IFN-γ to IL-4 spots and ELISA assays comparing IFN-γ and IL-5 levels from culture supernatants demonstrated the same pattern of marked type 2 skewing by B cells. This pattern was unaffected by the presence of anti-IL-4 antibody suggesting type 2 skewing was not mediated by IL-4. Cytokine skewing produced by B cells or MNC could be partially reversed by swapping MNC and B cells during re-stimulation on day 7, but this plasticity was markedly reduced after 3 (weekly) cycles of B cell or MNC re-stimulation in vitro. Type 2 skewing by B cells was enhanced when monocytes were removed from responder T cell populations by either depleting CD14+ positive cells or by positive selection of T cells prior to stimulation. In contrast, type 2 polarization could be prevented using recombinant IL-12. Not all cells of B-cell origin share the same propensity to type 2 skewing observed with IL-4/CD40L-stimulated B cells; under identical conditions, EBV-transformed B cells stimulated alloimmune T cells to produce a strong type 1 cytokine response comparable to that produced by MNCs. In summary, IL-4/CD40L-stimulated B cells strongly promote a type 2 T cell response during primary alloimmune challenge; this skewing can become fixed after repeated B cell stimulation. Investigators using these cells as APC should be aware of this potential phenomenon, particularly during primary T cell responses. It is also important to consider the factors described above that may exacerbate or ameliorate this effect.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1482-1482
Author(s):  
Seung-Tae Lee ◽  
Yun Fang Jiang ◽  
Soung-Chul Cha ◽  
Hong Qin ◽  
Larry W. Kwak ◽  
...  

Abstract Advanced stage follicular lymphoma remains an incurable disease with a median survival of 8 to 10 years that has not significantly changed over the last four decades. Therefore, novel treatment options are necessary to improve the clinical outcome in these patients. The observation of spontaneous regressions in a small percentage of patients suggested that augmenting the host immune response could potentially control this malignancy. Strategies using active specific immunotherapy with idiotype vaccines led to induction of clinical and molecular responses in a few patients but have met with only limited success possibly due to the low frequency of antigen-specific T cells induced in the patients. In contrast to active immunization, T cells of a given specificity and function may be selected and expanded in vitro to the desired number for adoptive cell transfer. Towards this goal, we stimulated tumor infiltrating lymphocytes (TILs) or peripheral blood mononuclear cells (PBMCs) from five follicular lymphoma patients with CD40 ligand-activated autologous tumor cells at approximately ten-day intervals in the presence of IL-2 and IL-15. After four rounds of stimulations, T cell lines generated from 3/5 patients recognized autologous unmodified tumor cells by producing significant amounts of TNF-α, GM-CSF and/or IFN-γ. By phenotypic analysis, the T cell lines were predominantly CD4+ T cells (&gt; 70%), and intracellular cytokine assay showed that up to 40% of the CD4+ T cells were tumor-reactive. The inhibition of cytokine production by anti-HLA class II but not class I blocking antibodies confirmed that the CD4+ T cells were tumor-reactive. Further characterization revealed that the T cells from one patient recognized autologous tumor but not autologous normal B cells suggesting that they were tumor-specific. While in a second patient CD4+ T cell clones generated from the T cell line by limiting dilution recognized autologous tumor and autologous normal B cells but not autologous monocytes suggesting that they were B cell lineage-specific. We conclude that follicular lymphoma-specific T cells exist and can be efficiently expanded in vitro from both TILs and PBMCs using CD40 ligand-activated autologous tumor cells for adoptive T cell therapy. Additionally, identification of antigens recognized by these T cells could lead to development of novel immunotherapeutic strategies for lymphomas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 708-708
Author(s):  
Hongwei Wang ◽  
F. Cheng ◽  
K. Wright ◽  
J. Tao ◽  
M. Smith ◽  
...  

Abstract STAT3 signaling has emerged as a negative regulator of inflammatory responses in immune cells. In bone-marrow derived antigen-presenting cells (APCs), genetic or pharmacologic disruption of STAT3 led to inflammatory cells that effectively prime antigen-specific T-cell responses and restore the responsiveness of tolerized T-cells. In contrast, enhanced Stat3 activity in APCs resulted in increased production of the immunosuppressive cytokine IL-10 and induction of T-cell tolerance1. B-cell lymphomas being tumors derived from B-lymphocytes display intrinsic antigen-presenting capabilities. Augmentation of this APC function has been shown to result in effective anti-lymphoma immunity2. In this study we determined whether targeting Stat3 signaling might influence the intrinsic APC function of malignant B-cells and the responsiveness –or not- of antigen-specific CD4+ T-cells. First, we specifically block STAT3 signaling in A20 lymphoma B-cells by using a dominant negative variant of STAT3, Stat3b. Inhibition of STAT3 resulted in tumor cells capable not only of fully priming naïve antigen-specific CD4+T-cells but also able of restoring the responsiveness of tolerant T-cells from lymphoma bearing mice. Conversely, transfection of A20 B-cells with Stat3c, a constitutively activated mutant form of STAT3, led to T-cell unresponsiveness. Of note, manipulation of STAT3 in B cell tumors was associated with changes in the mRNA expression and protein levels of IL-10. Second, we evaluated the effects of two novel Stat3 inhibitors, CPA-7 (a platinum-containing compound that disrupts STAT3 DNA binding activity) and S3I-201 (inhibitor of Stat3:Stat3 complex formation and Stat3 DNA binding and transcriptional activities) in a murine model of Mantle Cell Lymphoma (MCL). In vitro treatment of FC-muMCL1 cells - derived from a tumor elicited in Em-Cyclin D1 transgenic mice- with increasing concentrations of either CPA-7 or S3I-201 resulted in an enhanced presentation of OVA-peptide to naïve CD4+ T-cells specific for a MHC class II restricted epitope of ovalbumin (OT-II cells). Indeed, these T-cells produce higher levels of IL-2 and IFN-gamma compared to anti-OVA T cells that encountered cognate antigen in untreated FC-muMCL1 cells. More importantly, MCL cells treated with CPA-7 restored the responsiveness of tolerized anti-OVA CD4+ T-cells. Finally, in vivo treatment of MCL-bearing mice with CPA-7 (5 mg/kg/iv given on days +21, +24 and +27 after tumor challenge) resulted in significant inhibition of p-Stat3 in malignant B-cells and augmentation of their APC function. Taken together, STAT3 signaling is involved in the regulation of the antigen-presenting capabilities of B-cell lymphomas and as such represents a novel molecular target to augment the immunogenicity of these tumors.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4021-4021
Author(s):  
James Sundblom Young ◽  
Tao Wu ◽  
Yuhong Chen ◽  
Dongchang Zhao ◽  
Heather F Johnston ◽  
...  

Abstract Abstract 4021 Chronic graft-versus-host disease (cGVHD) manifests with autoimmune symptoms (i.e. increased serum levels of autoantibodies, donor T cell infiltration in skin and salivary gland tissues, and collagen deposition in skin tissues). Donor B cells have been indicated to play an important role in the pathogenesis of cGVHD in mouse models as well as in patients, but the mechanisms remain unclear. In the current studies, using a cGVHD mouse model of DBA/2 donor to MHC-matched BALB/c host, we have observed that donor B cells are activated by donor CD4+ T cells in transplants to upregulate MHC II and co-stimulatory molecules and produce IgG autoantibodies; in turn, donor B cells mediated clonal expansion of autoreactive donor-type CD4+ T cells, as judged by TCR spectratyping and in vitro T cell proliferation in response to donor- and host-type APCs. Kinetic studies showed that the presence of donor B cells in transplants was associated with persistence of GVHD target tissue damage (i.e. sclerodermatous skin) and persistence of donor CD4+ T infiltration in the tissues in which there is an expansion of Th1 and Th2 but not Th17. The presence of donor B cells in transplants also markedly augmented tissue damage in prototypical cGVHD targets such as the salivary gland. Sorted donor CD4+ T cells from primary recipients given donor B cell-containing transplants but not from the primary recipients given B cell-depleted transplants caused cGVHD-like tissue damage in the skin and salivary gland of adoptive recipients. These results indicate that donor B cells in bone marrow transplants play an important role in the generation and expansion of pathogenic CD4+ T cells that mediate chronic GVHD tissue damage. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4117-4117
Author(s):  
Sumantha Bhatt ◽  
Kathleen Brown ◽  
Feng Lin ◽  
Michael P Meyer ◽  
Margaret V. Ragni ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  
B Cells ◽  
B Cell ◽  
Gm Csf ◽  

Abstract Abstract 4117 Background: Hemophilia is an X-linked bleeding disorder resulting from a mutation in coagulation factor VIII (F.VIII). A major drawback of current plasma-derived or recombinant F.VIII therapy is the formation of F.VIII antibodies (inhibitors). Inhibitor formation is a T cell-dependent, B cell-mediated immune response to foreign infused F.VIII. Myeloid derived suppressor cells (MDSCs) are potent suppressors of T cell and B cell responses and are currently under study for therapeutic applications in transplantation and autoimmune diseases. However, the mechanisms of MDSC development and function remain unknown, and in vitro propagation of MDSCs has been a challenge. We hypothesized that MDSCs might be effective in inhibiting F.VIII inhibitor formation in the hemophilia A model. Methods: We developed a novel method for generating MDSCs in vitro by culturing bone marrow cells from hemophilia A mice with hepatic stellate cells (HSCs), hereafter referred to as HSC-conditioned myeloid cells (H-MCs). DCs were propagated from the bone marrow with GM-CSF and IL-4, whereas H-MCs were propagated from the bone marrow with GM-CSF and HSCs. Granulocyte contaminants were removed on day 2 and the remaining monocytic populations were harvested on day 5. Expression of cell surface antigens was analyzed by flow cytometry. Arginase1 and iNOS levels were compared by qPCR, with or without LPS stimulation. The in vitro suppressive capacity of the H-MCs was determined by a mixed leukocyte reaction culture. Splenic T cells from hemophilia A mice were stimulated by irradiated DCs (at a 1–20 ratio, APC to T cell) and recombinant F.VIII. Additional irradiated DCs or H-MCs were added in graded numbers as regulators. The proliferative response was determined by 3H-thymidine incorporation. The phenotype of cultured CD4+ T cells was characterized by intracellular staining for Foxp3 and IFN-gamma and analyzed by flow cytometry. Inhibition of B cells by H-MCs was determined by a CFSE dilution assay. Purified splenic B cells were labeled with CFSE and stimulated by Ig-M and IL-4. APCs (spleen cells) or H-MCs were added at a ratio of 1:10 (APC to B cell). The proportion of proliferating B cells was determined by CFSE dilution of B220 stained cells. In the COX-2 suppression assay, CFSE labeled B cells were treated with varying concentrations of the selective inhibitor of COX-2, NS398. The suppressive effect of H-MCs on B cells in vivo was determined by simultaneously administering H-MCs (I.V) and F.VIII (I.V.) to hemophila A mice on day 0 and rechallenging with recombinant F.VIII on days 2 and 4. WT B6 mice and hemophilia A mice without H-MC transfer served as controls. Plasma anti-F.VIII antibody titers were measured on day 12 by a modified ELISA assay. Results: H-MCs expressed low levels of costimulatory molecules but high levels of the inhibitory molecule B7-H1 and immunoregulatory enzyme arginase-1. In contrast, DCs expressed high levels of costimulatory molecules and MHC class II. In vitro studies demonstrated that the H-MCs markedly inhibited antigen specific T cell proliferation induced by dendritic cells in response to recombinant F.VIII (Fig. 1). H-MCs altered the T cell response in hemophilia A mice by promoting the expansion of regulatory T cells and inhibiting IFN-γ producing CD4+ T cells. When the H-MCs were cocultured with B cells isolated from hemophilia A mice, in the presence of Ig-M and IL-4, the H-MCs abrogated B cell activation and proliferation directly (Fig. 2). H-MCs may be modulating the B cell response through the Cox-2 pathway, as inhibition of Cox-2 through NS398 led to the restoration of B cell proliferation. More importantly, adoptive transfer of H-MCs into hemophilia Amice, at the time of F.VIII infusion, markedly suppressed anti-F.VIII antibody formation (Fig. 3). Conclusion: These results suggest that HSC conditioned myeloid cells may represent a potential therapeutic approach to induction of immune tolerance in patients with hemophilia A andother immune disorders. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document