Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN–driven CCL5 and CXCL10

2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Courtney Mowat ◽  
Shayla R. Mosley ◽  
Afshin Namdar ◽  
Daniel Schiller ◽  
Kristi Baker

Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Jitske van den Bulk ◽  
Els M. E. Verdegaal ◽  
Dina Ruano ◽  
Marieke E. Ijsselsteijn ◽  
Marten Visser ◽  
...  

Abstract Background The efficacy of checkpoint blockade immunotherapies in colorectal cancer is currently restricted to a minority of patients diagnosed with mismatch repair-deficient tumors having high mutation burden. However, this observation does not exclude the existence of neoantigen-specific T cells in colorectal cancers with low mutation burden and the exploitation of their anti-cancer potential for immunotherapy. Therefore, we investigated whether autologous neoantigen-specific T cell responses could also be observed in patients diagnosed with mismatch repair-proficient colorectal cancers. Methods Whole-exome and transcriptome sequencing were performed on cancer and normal tissues from seven colorectal cancer patients diagnosed with mismatch repair-proficient tumors to detect putative neoantigens. Corresponding neo-epitopes were synthesized and tested for recognition by in vitro expanded T cells that were isolated from tumor tissues (tumor-infiltrating lymphocytes) and from peripheral mononuclear blood cells stimulated with tumor material. Results Neoantigen-specific T cell reactivity was detected to several neo-epitopes in the tumor-infiltrating lymphocytes of three patients while their respective cancers expressed 15, 21, and 30 non-synonymous variants. Cell sorting of tumor-infiltrating lymphocytes based on the co-expression of CD39 and CD103 pinpointed the presence of neoantigen-specific T cells in the CD39+CD103+ T cell subset. Strikingly, the tumors containing neoantigen-reactive TIL were classified as consensus molecular subtype 4 (CMS4), which is associated with TGF-β pathway activation and worse clinical outcome. Conclusions We have detected neoantigen-targeted reactivity by autologous T cells in mismatch repair-proficient colorectal cancers of the CMS4 subtype. These findings warrant the development of specific immunotherapeutic strategies that selectively boost the activity of neoantigen-specific T cells and target the TGF-β pathway to reinforce T cell reactivity in this patient group.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


2015 ◽  
Vol 195 (10) ◽  
pp. 4650-4659 ◽  
Author(s):  
Dennis Ng ◽  
Blandine Maître ◽  
Derek Cummings ◽  
Albert Lin ◽  
Lesley A. Ward ◽  
...  
Keyword(s):  
T Cells ◽  
Type I ◽  

2019 ◽  
Vol 4 (31) ◽  
pp. eaap9520 ◽  
Author(s):  
Lelisa F. Gemta ◽  
Peter J. Siska ◽  
Marin E. Nelson ◽  
Xia Gao ◽  
Xiaojing Liu ◽  
...  

In the context of solid tumors, there is a positive correlation between the accumulation of cytotoxic CD8+tumor-infiltrating lymphocytes (TILs) and favorable clinical outcomes. However, CD8+TILs often exhibit a state of functional exhaustion, limiting their activity, and the underlying molecular basis of this dysfunction is not fully understood. Here, we show that TILs found in human and murine CD8+melanomas are metabolically compromised with deficits in both glycolytic and oxidative metabolism. Although several studies have shown that tumors can outcompete T cells for glucose, thus limiting T cell metabolic activity, we report that a down-regulation in the activity of ENOLASE 1, a critical enzyme in the glycolytic pathway, represses glycolytic activity in CD8+TILs. Provision of pyruvate, a downstream product of ENOLASE 1, bypasses this inactivity and promotes both glycolysis and oxidative phosphorylation, resulting in improved effector function of CD8+TILs. We found high expression of both enolase 1 mRNA and protein in CD8+TILs, indicating that the enzymatic activity of ENOLASE 1 is regulated posttranslationally. These studies provide a critical insight into the biochemical basis of CD8+TIL dysfunction.


2010 ◽  
Vol 185 (10) ◽  
pp. 6013-6022 ◽  
Author(s):  
Joe Wei ◽  
Jason Waithman ◽  
Roleen Lata ◽  
Nicole A. Mifsud ◽  
Jonathan Cebon ◽  
...  
Keyword(s):  
T Cells ◽  
Type I ◽  

2004 ◽  
Vol 20 (4-5) ◽  
pp. 215-224 ◽  
Author(s):  
Jeremy R. Jass

The aim of this paper is to indicate how the pathologist may suspect a diagnosis of hereditary non-polyposis colorectal cancer (HNPCC) on the basis of histological criteria and patient age alone. A single morphological feature, namely the presence of intra-epithelial lymphocytes (tumor infiltrating lymphocytes), identifies the majority of colorectal cancers (CRC) with the DNA microsatellite instability-high phenotype. A number of pathological criteria can help to distinguish HNPCC from sporadic MSI-H CRC, though age below 60 years is an important pointer towards HNPCC. Immunohistochemistry to demonstrate loss of expression of DNA mismatch repair genes serves as a highly reliable test of mismatch repair deficiency if antibodies to hMLH1, hMSH2, hMSH6 and hPMS2 are employed.


2020 ◽  
Author(s):  
Courtney Mowat ◽  
Shayla R. Mosley ◽  
Afshin Namdar ◽  
Daniel Schiller ◽  
Kristi Baker

SummaryColorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) are heavily infiltrated by CD8+ tumor infiltrating lymphocytes (TILs) and are associated with a better prognosis than the majority of CRCs. The immunogenicity of dMMR CRCs is commonly attributed to abundant neoantigen generation due to their extreme genomic instability. However, lack of neoantigenic overlap between these and other CRCs necessitates study of antigen-independent mechanisms of immune activation by dMMR CRCs in order identify therapeutic strategies for treating MMR proficient CRCs. We show here using organoid cocultures and orthotopic models that a critical component of dMMR CRC’s immunogenicity is the activation and recruitment of systemic CD8+ T cells into the tumor epithelium by overexpression of the chemokines CCL5 and CXCL10. This is dependent on endogenous activation of the cGAS/STING and IFN signaling pathways by the damaged DNA in dMMR CRCs. These signaling pathways remain sensitive to exogenous stimulation in other CRCs, identifying an attractive therapeutic avenue for increasing TIL infiltration into normally immune resistant CRC subtypes. We have thus identified a key neoantigen-independent mechanism that underlies the ability for dMMR CRCs to recruit TILs into the tumor epithelium. Given that TIL recruitment is a prerequisite for effective tumor killing either by the endogenous immune system or in the context of immunotherapies, treatments that activate IFN-induced chemokine-production by tumor cells promise to improve the prognosis of patients with many different CRC subsets.Statement of SignificanceA critical component of antitumor immunity in dMMR CRCs is their ability to recruit T cells into the tumor epithelium as a prerequisite to tumor cell killing. This occurs because their extensive genomic instability leads to endogenous activation of cGAS/STING and overexpression of CCL5 and CXCL10.


2020 ◽  
Vol 12 (564) ◽  
pp. eabb2311 ◽  
Author(s):  
Tobias Weiss ◽  
Emanuele Puca ◽  
Manuela Silginer ◽  
Teresa Hemmerle ◽  
Shila Pazahr ◽  
...  

Glioblastoma is a poorly immunogenic cancer, and the successes with recent immunotherapies in extracranial malignancies have, so far, not been translated to this devastating disease. Therefore, there is an urgent need for new strategies to convert the immunologically cold glioma microenvironment into a hot one to enable effective antitumor immunity. Using the L19 antibody, which is specific to a tumor-associated epitope of extracellular fibronectin, we developed antibody-cytokine fusions—immunocytokines—with interleukin-2 (IL2), IL12, or tumor necrosis factor (TNF). We showed that L19 accumulated in the tumor microenvironment of two orthotopic immunocompetent mouse glioma models. Furthermore, intravenous administration of L19-mIL12 or L19-mTNF cured a proportion of tumor-bearing mice, whereas L19-IL2 did not. This therapeutic activity was abolished in RAG−/− mice or upon depletion of CD4 or CD8 T cells, suggesting adaptive immunity. Mechanistically, both immunocytokines promoted tumor-infiltrating lymphocytes and increased the amounts of proinflammatory cytokines within the tumor microenvironment. In addition, L19-mTNF induced tumor necrosis. Systemic administration of the fully human L19-TNF fusion protein to patients with glioblastoma (NCT03779230) was safe, decreased regional blood perfusion within the tumor, and was associated with increasing tumor necrosis and an increase in tumor-infiltrating CD4 and CD8 T cells. The extensive preclinical characterization and subsequent clinical translation provide a robust basis for future studies with immunocytokines to treat malignant brain tumors.


Sign in / Sign up

Export Citation Format

Share Document