consensus molecular subtype
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 31)

H-INDEX

7
(FIVE YEARS 5)

2021 ◽  
Vol 9 (12) ◽  
pp. e003414
Author(s):  
Jung Ho Kim ◽  
Mi-Kyoung Seo ◽  
Ji Ae Lee ◽  
Seung-Yeon Yoo ◽  
Hyeon Jeong Oh ◽  
...  

BackgroundColorectal cancers (CRCs) with microsatellite instability-high (MSI-H) are hypermutated tumors and are generally regarded as immunogenic. However, their heterogeneous immune responses and underlying molecular characteristics remain largely unexplained.MethodsWe conducted a retrospective analysis of 73 primary MSI-H CRC tissues to characterize heterogeneous immune subgroups. Based on combined tumor-infiltrating lymphocyte (TIL) immunoscore and tertiary lymphoid structure (TLS) activity, MSI-H CRCs were classified into immune-high, immune-intermediate, and immune-low subgroups. Of these, the immune-high and immune-low subgroups were further analyzed using whole-exome and transcriptome sequencing.ResultsWe found considerable variations in immune parameters between MSI-H CRCs, and immune subgrouping of MSI-H CRCs was performed accordingly. The TIL densities and TLS activities of immune-low MSI-H CRCs were comparable to those of an immune-low or immune-intermediate subgroup of microsatellite-stable CRCs. There were remarkable differences between immune-high and immune-low MSI-H CRCs, including their pathological features (medullary vs mucinous), genomic alterations (tyrosine kinase fusions vs KRAS mutations), and activated signaling pathways (immune-related vs Wnt and Notch signaling), whereas no significant differences were found in tumor mutational burden (TMB) and neoantigen load. The immune-low MSI-H CRCs were subdivided by the consensus molecular subtype (CMS1 vs CMS3) with different gene expression signatures (mesenchymal/stem-like vs epithelial/goblet-like), suggesting distinct immune evasion mechanisms. Angiogenesis and CD200 were identified as potential therapeutic targets in immune-low CMS1 and CMS3 MSI-H CRCs, respectively.ConclusionsMSI-H CRCs are immunologically heterogeneous, regardless of TMB. The unusual immune-low MSI-H CRCs are characterized by mucinous histology, KRAS mutations, and Wnt/Notch activation, and can be further divided into distinct gene expression subtypes, including CMS4-like CMS1 and CMS3. Our data provide novel insights into precise immunotherapeutic strategies for subtypes of MSI-H tumors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tae Won Kim ◽  
Hye Kyung Hong ◽  
Chung Lee ◽  
Sunmin Kim ◽  
Woo Yong Lee ◽  
...  

Abstract Background Young patients with colorectal cancer (CRC) exhibit poor prognoses compared to older patients due to the difficulty in early diagnosis and treatment. However, the underlying molecular characteristics are still unclear. Methods We conducted a comprehensive analysis of 49 CRC patients without hereditary CRC using the whole-exome and RNA sequencing with tumor and matched normal samples. A total of 594 TCGA samples and 4 patient-derived cells were utilized for validation. Results Consensus molecular subtype 4 (CMS4) (53.85%) and CMS2 (38.46%) were enriched in the young (≤ 40 years) and old (> 60 years) age groups, respectively. A CMS4-associated gene, platelet-derived growth factor receptor α (PDGFRA), was significantly upregulated in young patients with CRC (FC = 3.21, p = 0.0001) and was negatively correlated with age (p = 0.0001, R = − 0.526). Moreover, PDGFRA showed a positive co-expression with metastasis-related genes in young CRC patients. In vitro validation confirmed that young patient-derived cells (PDCs) showed an enriched expression of PDGFRA compared to old PDCs and a reduced proliferation rate by knockdown of PDGFRA. Furthermore, young CRC patients were more sensitive to regorafenib, a PDGFRA-targeting drug, than old CRC patients. Conclusions Our study suggests that CRC in young patients is associated with CMS4 and PDGFRA. In addition, PDGFRA may serve potential of novel therapeutic strategies and represent a predictive biomarker of response to regorafenib for young CRC patients.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4923
Author(s):  
Saikat Chowdhury ◽  
Matan Hofree ◽  
Kangyu Lin ◽  
Dipen Maru ◽  
Scott Kopetz ◽  
...  

The implications of intratumor heterogeneity on the four consensus molecular subtypes (CMS) of colorectal cancer (CRC) are not well known. Here, we use single-cell RNA sequencing (scRNASeq) to build an algorithm to assign CMS classification to individual cells, which we use to explore the distributions of CMSs in tumor and non-tumor cells. A dataset of colorectal tumors with bulk RNAseq (n = 3232) was used to identify CMS specific-marker gene sets. These gene sets were then applied to a discovery dataset of scRNASeq profiles (n = 10) to develop an algorithm for single-cell CMS (scCMS) assignment, which recapitulated the intrinsic biology of all four CMSs. The single-cell CMS assignment algorithm was used to explore the scRNASeq profiles of two prospective CRC tumors with mixed CMS via bulk sequencing. We find that every CRC tumor contains individual cells of each scCMS, as well as many individual cells that have enrichment for features of more than one scCMS (called mixed cells). scCMS4 and scCMS1 cells dominate stroma and immune cell clusters, respectively, but account for less than 3% epithelial cells. These data imply that CMS1 and CMS4 are driven by the transcriptomic contribution of immune and stromal cells, respectively, not tumor cells.


2021 ◽  
Author(s):  
Kai Song ◽  
Chao Liu ◽  
Jiashuai Zhang ◽  
Yang Yao ◽  
Huiting Xiao ◽  
...  

Abstract BackgroundmicroRNAs (miRNAs) serve important roles in metabolism. The consensus molecular subtype (CMS) 3 of colorectal cancer (CRC) is characterized by activated fatty acid (FA) metabolism. We aimed to identify essential miRNAs of CMS3-CRC and analyze the regulatory role in the FA metabolism. MethodsThe RobustRankAggreg method by integrating multi-omics data including genome, epigenome, transcriptome and interactome, was applied to filter out functional genes (Fgenes). The backward derivation approach based on Fgenes and miRNA-gene interactions was further applied to identify functional miRNAs (Fmirs). Nine human CRC cell lines with different CMSs were investigated. RT-qPCR, western blotting and immunofluorescence were performed to examine the effect of miR-20a on FA synthesis and Wnt/β-catenin signaling. The effect of miR-20a on cell proliferation and metastasis were studied by clone-formation, EdU assay, wound healing and transwell assay.ResultsWe identified 12 Fmirs by integrating multi-omics features in CMS3-CRC. These Fmirs exhibited significantly enriched CRC driver miRNAs and significant impacts on CMS3-CRC cell growth. Beyond the findings, miR-20a was significantly correlated with Wnt/β-catenin signaling and participated in FA metabolism subpathway. In vitro assays combined with bioinformatics analyses demonstrated that elevated miR-20a up-regulated FA synthesis enzymes FASN, ACAC and ACLY via Wnt/β-catenin signaling, and finally promoted proliferative and migration of CMS3-CRC cells. ConclusionsOverall, our study revealed that miR-20a promoted progression of CMS3-CRC by regulating FA metabolism and served as a potential target for preventing tumor metastasis.


2021 ◽  
Author(s):  
Michael W. Greene ◽  
Peter T. Abraham ◽  
Peyton C. Kuhlers ◽  
Elizabeth A. Lipke ◽  
Martin J. Heslin ◽  
...  

AbstractBackgroundColorectal cancer (CRC) is the third-leading cause of cancer-related deaths in the United States and worldwide. Obesity - a worldwide public health concern - is a known risk factor for cancer including CRC. However, the mechanisms underlying the link between CRC and obesity have yet to be fully elucidated in part because of the molecular heterogeneity of CRC. We hypothesized that obesity modulates CRC in a consensus molecular subtype (CMS)-dependent manner.MethodsRNA-seq data and associated tumor and patient characteristics including body weight and height data for 232 patients were obtained from The Cancer Genomic Atlas – Colon Adenocarcinoma (TCGA-COAD) database. Tumor samples were classified into the four CMSs with the CMScaller R package; Body mass index (BMI) was calculated and categorized as normal, overweight, and obese.ResultsWe observed a significant difference in CMS categorization between BMI categories. Differentially expressed genes (DEGs) between obese and overweight samples and normal samples differed across the CMSs, and associated prognostic analyses indicated that the DEGs had differing effects on survival. Using Gene Set Enrichment Analysis, we found differences in Hallmark gene set enrichment between obese and overweight samples and normal samples across the CMSs. We constructed Protein-Protein Interaction networks and observed differences in obesity-regulated hub genes for each CMS. Finally, we analyzed and found differences in predicted drug sensitivity between obese and overweight samples and normal samples across the CMSs.ConclusionsThus, we conclude that obesity has CMS-specific effects on the CRC tumor transcriptome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Di Franco ◽  
Paola Bianca ◽  
Davide Stefano Sardina ◽  
Alice Turdo ◽  
Miriam Gaggianesi ◽  
...  

AbstractObesity is a strong risk factor for cancer progression, posing obesity-related cancer as one of the leading causes of death. Nevertheless, the molecular mechanisms that endow cancer cells with metastatic properties in patients affected by obesity remain unexplored.Here, we show that IL-6 and HGF, secreted by tumor neighboring visceral adipose stromal cells (V-ASCs), expand the metastatic colorectal (CR) cancer cell compartment (CD44v6 + ), which in turn secretes neurotrophins such as NGF and NT-3, and recruits adipose stem cells within tumor mass. Visceral adipose-derived factors promote vasculogenesis and the onset of metastatic dissemination by activation of STAT3, which inhibits miR-200a and enhances ZEB2 expression, effectively reprogramming CRC cells into a highly metastatic phenotype. Notably, obesity-associated tumor microenvironment provokes a transition in the transcriptomic expression profile of cells derived from the epithelial consensus molecular subtype (CMS2) CRC patients towards a mesenchymal subtype (CMS4). STAT3 pathway inhibition reduces ZEB2 expression and abrogates the metastatic growth sustained by adipose-released proteins. Together, our data suggest that targeting adipose factors in colorectal cancer patients with obesity may represent a therapeutic strategy for preventing metastatic disease.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Pablo Azcue ◽  
Ignacio Encío ◽  
David Guerrero Setas ◽  
Javier Suarez Alecha ◽  
Arkaitz Galbete ◽  
...  

Background. There is a patent need to better characterize early-stage colorectal cancer (CRC) patients. PD-1 ligand (PD-L1) expression has been proposed as a prognostic factor but yields mixed results in different settings. The Consensus Molecular Subtype (CMS) classification has yet to be integrated into clinical practice. We sought to evaluate the prognostic value of PD-L1 expression overall and within CMS in early-stage colon cancer patients, in the hope of assisting treatment choice in this setting. Methods. Tissue-microarrays were constructed from tumor samples of 162 stage II/III CRC patients. They underwent automatic immunohistochemical staining for PD-L1 and the proposed CMS panel. Primary endpoints were overall survival (OS) and disease-free survival (DFS). Results. PD-L1 expression was significantly and independently associated with better prognosis (HR = 0.46 (0.26–0.82), p = 0.009) and was mostly seen in immune cells of the tumor-related stroma. CMS4 five-folds the risk of mortalitycompared with CMS1 (HR = 5.58 (1.36, 22.0), p = 0.034). In the subgroup CMS2/CMS3 analysis, PD-L1 expression significantly differentiated individuals with better OS (p = 0.004) and DFS (p < 0.001). Conclusions. Our study suggests that PD-L1 expression is an independent prognostic factor in patients with stage II/III colon cancer. Additionally, it successfully differentiates patients with better prognosis in the CMS2/CMS3 group and may prove significant for the clinical relevance of the CMS classification.


2021 ◽  
Vol 22 (8) ◽  
pp. 3811
Author(s):  
Le Zhang ◽  
Prashanthi Ramesh ◽  
Maxime Steinmetz ◽  
Jan Paul Medema

Colorectal cancer (CRC) is a heterogeneous disease, which in part explains the differential response to chemotherapy observed in the clinic. BH3 mimetics, which target anti-apoptotic BCL-2 family members, have shown potential in the treatment of hematological malignancies and offer promise for the treatment of solid tumors as well. To gain a comprehensive understanding of the response to BH3 mimetics in CRC and the underlying molecular factors predicting sensitivity, we screened a panel of CRC cell lines with four BH3 mimetics targeting distinct anti-apoptotic BCL-2 proteins. Treatment with compounds alone and in combination revealed potent efficacy of combined MCL-1 and BCL-XL inhibition in inducing CRC cell death, irrespective of molecular features. Importantly, expression of the anti-apoptotic protein target of BH3 mimetics on its own did not predict sensitivity. However, the analysis did identify consensus molecular subtype (CMS) specific response patterns, such as higher resistance to single and combined BCL-2 and MCL-1 inhibition in CMS2 cell lines. Furthermore, analysis of mutation status revealed that KRAS mutant cell lines were more resistant to MCL-1 inhibition. Conclusively, we find that CRC cell lines presented with distinct responses to BH3 mimetics that can in part be predicted by their CMS profile and KRAS/BRAF mutations. Overall, almost all CRC lines share sensitivity in the nanomolar range to combined MCL-1 and BCL-XL targeting suggesting that this would be the preferred approach to target these cancers.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008769
Author(s):  
Song He ◽  
Xinyu Song ◽  
Xiaoxi Yang ◽  
Jijun Yu ◽  
Yuqi Wen ◽  
...  

Extensive amounts of multi-omics data and multiple cancer subtyping methods have been developed rapidly, and generate discrepant clustering results, which poses challenges for cancer molecular subtype research. Thus, the development of methods for the identification of cancer consensus molecular subtypes is essential. The lack of intuitive and easy-to-use analytical tools has posed a barrier. Here, we report on the development of the COnsensus Molecular SUbtype of Cancer (COMSUC) web server. With COMSUC, users can explore consensus molecular subtypes of more than 30 cancers based on eight clustering methods, five types of omics data from public reference datasets or users’ private data, and three consensus clustering methods. The web server provides interactive and modifiable visualization, and publishable output of analysis results. Researchers can also exchange consensus subtype results with collaborators via project IDs. COMSUC is now publicly and freely available with no login requirement at http://comsuc.bioinforai.tech/ (IP address: http://59.110.25.27/). For a video summary of this web server, see S1 Video and S1 File.


Sign in / Sign up

Export Citation Format

Share Document