scholarly journals Can repurposing drugs play a role in malaria control?

2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Roland A. Cooper ◽  
Laura Kirkman

Innovative drug treatments for malaria, optimally with novel targets, are needed to combat the threat of parasite drug resistance. As drug development efforts continue, there may be a role for a host-targeting, repurposed cancer drug administered together with an artemisinin combination therapy that was shown to improve the speed of recovery from a malaria infection.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Paulina Tindana ◽  
Freek de Haan ◽  
Chanaki Amaratunga ◽  
Mehul Dhorda ◽  
Rob W. van der Pluijm ◽  
...  

AbstractMalaria remains a major cause of morbidity and mortality in Africa, particularly in children under five years of age. Availability of effective anti-malarial drug treatment is a cornerstone for malaria control and eventual malaria elimination. Artemisinin-based combination therapy (ACT) is worldwide the first-line treatment for uncomplicated falciparum malaria, but the ACT drugs are starting to fail in Southeast Asia because of drug resistance. Resistance to artemisinins and their partner drugs could spread from Southeast Asia to Africa or emerge locally, jeopardizing the progress made in malaria control with the increasing deployment of ACT in Africa. The development of triple artemisinin-based combination therapy (TACT) could contribute to mitigating the risks of artemisinin and partner drug resistance on the African continent. However, there are pertinent ethical and practical issues that ought to be taken into consideration. In this paper, the most important ethical tensions, some implementation practicalities and preliminary thoughts on addressing them are discussed. The discussion draws upon data from randomized clinical studies using TACT combined with ethical principles, published literature and lessons learned from the introduction of artemisinin-based combinations in African markets.


2020 ◽  
pp. 72-82
Author(s):  
Mossa Gardaneh ◽  
Zahra Nayeri ◽  
Parvin Akbari ◽  
Mahsa Gardaneh ◽  
Hasan Tahermansouri

Background: We investigated molecular mechanisms behind astaxanthinmediated induction of apoptosis in breast cancer cell lines toward combination therapy against cancer drug resistance. Methods: Breast cancer cell lines were treated with serial concentrations of astaxanthin to determine its IC50. We used drug-design software to predict interactions between astaxanthin and receptor tyrosine kinases or other key gene products involved in intracellular signaling pathways. Changes in gene expression were examined using RT-PCR. The effect of astaxanthin-nanocarbons combinations on cancer cells was also evaluated. Results: Astaxanthin induced cell death in all three breast cancer cell lines was examined so that its IC50 in two HER2-amplifying lines SKBR3 and BT-474 stood, respectively, at 36 and 37 ?M; however, this figure for MCF-7 was significantly lowered to 23 ?M (P<0.05). Astaxanthin-treated SKBR3 cells showed apoptotic death upon co-staining. Our in silico examinations showed that some growth-promoting molecules are strongly bound by astaxanthin via their specific amino acid residues with their binding energy standing below -6 KCa/Mol. Next, astaxanthin was combined with either graphene oxide or carboxylated multi-walled carbon nanotube, with the latter affecting SKBR cell survival more extensively than the former (P<0.05). Finally, astaxanthin coinduced tumor suppressors p53 and PTEN but downregulated the expression of growth-inducing genes in treated cells. Conclusion: These findings indicate astaxanthin carries' multitarget antitumorigenic capacities and introduce the compound as a suitable candidate for combination therapy regimens against cancer growth and drug resistance. Development of animal models to elucidate interactions between the compound and tumor microenvironment could be a major step forward towards the inclusion of astaxanthin in cancer therapy trials.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 483 ◽  
Author(s):  
Meghan Leary ◽  
Sarah Heerboth ◽  
Karolina Lapinska ◽  
Sibaji Sarkar

Cancer drug resistance is an enormous problem. It is responsible for most relapses in cancer patients following apparent remission after successful therapy. Understanding cancer relapse requires an understanding of the processes underlying cancer drug resistance. This article discusses the causes of cancer drug resistance, the current combination therapies, and the problems with the combination therapies. The rational design of combination therapy is warranted to improve the efficacy. These processes must be addressed by finding ways to sensitize the drug-resistant cancers cells to chemotherapy, and to prevent formation of drug resistant cancer cells. It is also necessary to prevent the formation of cancer progenitor cells by epigenetic mechanisms, as cancer progenitor cells are insensitive to standard therapies. In this article, we emphasize the role for the rational development of combination therapy, including epigenetic drugs, in achieving these goals.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Alfred Amambua-Ngwa ◽  
Joseph Okebe ◽  
Haddijatou Mbye ◽  
Sukai Ceesay ◽  
Fatima El-Fatouri ◽  
...  

ABSTRACT Antimalarial interventions have yielded a significant decline in malaria prevalence in The Gambia, where artemether-lumefantrine (AL) has been used as a first-line antimalarial for a decade. Clinical Plasmodium falciparum isolates collected from 2012 to 2015 were analyzed ex vivo for antimalarial susceptibility and genotyped for drug resistance markers (pfcrt K76T, pfmdr1 codons 86, 184, and 1246, and pfk13) and microsatellite variation. Additionally, allele frequencies of single nucleotide polymorphisms (SNPs) from other drug resistance-associated genes were compared from genomic sequence data sets from 2008 (n = 79) and 2014 (n = 168). No artemisinin resistance-associated pfk13 mutation was found, and only 4% of the isolates tested in 2015 showed significant growth after exposure to dihydroartemisinin. Conversely, the 50% inhibitory concentrations (IC50s) of amodiaquine and lumefantrine increased within this period. pfcrt 76T and pfmdr1 184F mutants remained at a prevalence above 80%. pfcrt 76T was positively associated with higher IC50s to chloroquine. pfmdr1 NYD increased in frequency between 2012 and 2015 due to lumefantrine selection. The TNYD (pfcrt 76T and pfmdr1 NYD wild-type haplotype) also increased in frequency following AL implementation in 2008. These results suggest selection for pfcrt and pfmdr1 genotypes that enable tolerance to lumefantrine. Increased tolerance to lumefantrine calls for sustained chemotherapeutic monitoring in The Gambia to minimize complete artemisinin combination therapy (ACT) failure in the future.


2014 ◽  
Vol 59 (3) ◽  
pp. 1770-1775 ◽  
Author(s):  
Lynette Isabella Ochola-Oyier ◽  
John Okombo ◽  
Leah Mwai ◽  
Steven M. Kiara ◽  
Lewa Pole ◽  
...  

ABSTRACTThe mechanisms of drug resistance development in thePlasmodium falciparumparasite to lumefantrine (LUM), commonly used in combination with artemisinin, are still unclear. We assessed the polymorphisms ofPfmspdbl2for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P= 0.04). The high frequency ofPfmspdbl2codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination therapy (Coartem).


2019 ◽  
Author(s):  
Danna R. Gifford ◽  
Ernesto Berríos-Caro ◽  
Christine Joerres ◽  
Tobias Galla ◽  
Christopher G. Knight

AbstractCombination therapy aims to prevent growth of organisms not resistant to all component drugs, making it an obvious strategy for countering the global rise of multi-drug resistance. However, success relies on preventing resistance from arising to all component drugs before full inhibition is reached during treatment. Here, we investigated whether bacterial populations can overcome combination therapy by evolving ‘multi-resistance’, i.e. independent resistance mutations to multiple drugs, during single-drug and combination antibiotic treatment. Using both experimental evolution and in silico stochastic simulations, we studied resistance evolution in a common laboratory strain of bacteria (Escherichia coli K-12 BW25113). Populations were exposed to either single-drug or combination treatments involving rifampicin and nalidixic acid, with concentrations increasing through time. For wild-type populations, multi-resistance was not detected in any of the experimental populations, and simulations predict its evolution should be rare. However, populations comprising mixtures of wild-type and ‘mutator’ strains were readily capable of evolving multi-resistance. Increasing the initial frequency of mutators resulted in a higher proportion of populations evolving multi-resistance. Experiments and simulations produced the same qualitative-and in many cases, quantitative-insights about the association between resistance, mutators and antibiotic treatment. In particular, both approaches demonstrated that multi-resistance can arise through sequential acquisition of independent resistance mutations, without a need to invoke multi-drug resistance mechanisms. Crucially, we found multi-resistance evolved even when not directly favoured by natural selection, i.e. under single-drug treatments. Simulations revealed this resulted from elevated mutation supply caused by genetic hitch-hiking of the mutator allele on single-drug resistant backgrounds. Our results suggest that combination therapy does not necessarily prevent sequential acquisition of multiple drug resistances via spontaneous mutation when mutators are present. Indeed both combination and single-drug treatments actively promoted multi-resistance, meaning that combination therapy will not be a panacea for the antibiotic resistance crisis.


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


Sign in / Sign up

Export Citation Format

Share Document