scholarly journals STUDIES ON SPREADING FACTORS

1947 ◽  
Vol 86 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Oscar Hechter ◽  
Ella L. Scully

The reaction between normal serum and hyaluronidase has been studied in vitro and under in vivo conditions in skin. Using in vitro conditions of incubation, serum exhibits antihyaluronidase activity as measured by assay of hyaluronidase spreading activity in skin. This confirms the work of others, who have previously described the serum inhibitory factor using other tests of hyaluronidase activity. When, however, hyaluronidase and setum are allowed to incubate in skin under in vivo conditions, no inhibitory influence of serum upon hyaluronidase spreading activity is evident. This latter finding has been taken to indicate that the environmental conditions in skin are unfavorable for the inhibitory reaction of serum upon hyaluronidase. The disparity between the in vivo and in vitro effectiveness of serum, and the significance of the serum factor as a defense mechanism against invasive processes, have been briefly discussed.

2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


2007 ◽  
Vol 292 (1) ◽  
pp. E272-E280 ◽  
Author(s):  
Francesca Ietta ◽  
Yuanhong Wu ◽  
Roberta Romagnoli ◽  
Nima Soleymanlou ◽  
Barbara Orsini ◽  
...  

Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine involved in regulation of macrophage function. In addition, MIF may also play a role in murine and human reproduction. Although both first trimester trophoblast and decidua express MIF, the regulation and functional significance of this cytokine during human placental development remains unclear. We assessed MIF expression throughout normal human placental development, as well as in in vitro (chorionic villous explants) and in vivo (high altitude placentae) models of human placental hypoxia. Dimethyloxalylglycine (DMOG), which stabilizes hypoxia inducible factor-1 under normoxic conditions, was also used to mimic the effects of hypoxia on MIF expression. Quantitative real-time PCR and Western blot analysis showed high MIF protein and mRNA expression at 7–10 wk and lower levels at 11–12 wk until term. Exposure of villous explants to 3% O2 resulted in increased MIF expression and secretion relative to standard conditions (20% O2). DMOG treatment under 20% O2 increased MIF expression. In situ hybridization and immunohistochemistry showed elevated MIF expression in low oxygen-induced extravillous trophoblast cells. Finally, a significant increase in MIF transcript was observed in placental tissues from high-altitude pregnancies. Hence, three experimental models of placental hypoxia (early gestation, DMOG treatment, and high altitude) converge in stimulating increased MIF, supporting the conclusion that placental-derived MIF is an oxygen-responsive cytokine highly expressed in physiological in vivo and in in vitro low oxygen conditions.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 207
Author(s):  
Hana Daneck ◽  
Matthias Benjamin Barth ◽  
Martin Geck ◽  
Anna K. Hundsdoerfer

The spurge hawkmoth Hyles euphorbiae L. (Sphingidae) comprises a remarkable species complex with still not fully resolved taxonomy. Its extensive natural distribution range covers diverse climatic zones. This predestinates particular populations to cope with different local seasonally unfavorable environmental conditions. The ability of the pupae to overcome outer frosty conditions is well known. However, the differences between two main ecotypes (‘euphorbiae’ and ‘tithymali’) in terms of the inherent degree of frost tolerance, its corresponding survival strategy, and underlying mechanism have not been studied in detail so far. The main aim of our study was to test the phenotypic exhibition of pupae (as the relevant life cycle stadia to outlast unfavorable conditions) in response to combined effects of exogenous stimuli, such as daylight length and cooling regime. Namely, we tested the turnout of subitan (with fast development, unadapted to unfavorable conditions) or diapause (paused development, adapted to unfavorable external influences and increased resistance) pupae under different conditions, as well as their mortality, and we measured the super cooling point (SCP) of whole pupae (in vivo) and pupal hemolymph (in vitro) as phenotypic indicators of cold acclimation. Our results show higher cold sensitivity in ‘tithymali’ populations, exhibiting rather opportunistic and short-termed cold hardiness, while ‘euphorbiae’ produces a phenotype of seasonal cold-hardy diapause pupae under a combined effect of short daylight length and continuous cold treatment. Further differences include the variability in duration and mortality of diapause pupae. This suggests different pre-adaptations to seasonal environmental conditions in each ecotype and may indicate a state of incipient speciation within the H. euphorbiae complex.


2018 ◽  
Vol 13 (2) ◽  
pp. 149 ◽  
Author(s):  
Naureen Shehzadi ◽  
Khalid Hussain ◽  
Nadeem Irfan Bukhari ◽  
Muhammad Islam ◽  
Muhammad Tanveer Khan ◽  
...  

<p class="Abstract">The present study aimed at the evaluation of anti-hyperglycemic and hepatoprotective potential of a new drug candidate, 5-[(4-chlorophenoxy) methyl]-1,3,4-oxadiazole-2-thiol (OXCPM) through in vitro and in vivo assays, respectively. The compound displayed excellent dose-dependent ɑ-amylase (28.0-92.0%), ɑ-glucosidase (40.3-93.1%) and hemoglobin glycosylation (9.0%-54.9%) inhibitory effects and promoted the uptake of glucose by the yeast cells (0.2 to 26.3%). The treatment of the isoniazid- and rifampicin- (p.o., 50 mg/kg of each) intoxicated rats with OXCPM (100 mg/kg, p.o.) resulted in restoring the normal serum levels of the non-enzymatic (total bilirubin, total protein and albumin) and bringing about a remarkable decrease in the levels of enzymatic (alanine transaminases, aspartate transaminases and alkaline phosphatase) biomarkers. The molecular docking studies indicated high binding affinity of the compound for hyperglycemia-related protein targets; fructose-1,6-bisphosphatase, beta<sub>2</sub>-adrenergic receptors and glucokinase. The results indicate that OXCPM may not only reduce hyperglycemia by enzyme inhibition but also the disease complications through protection of hemoglobin glycosylation and hepatic injury.</p><p class="Abstract"><strong>Video Clip of Methodology:</strong></p><p class="Abstract">Glucose uptake by yeast cells:   4 min 51 sec   <a href="https://www.youtube.com/v/8cJkuMtV0Wc">Full Screen</a>   <a href="https://www.youtube.com/watch?v=8cJkuMtV0Wc">Alternate</a></p>


1986 ◽  
Vol 113 (4_Suppl) ◽  
pp. S35-S40 ◽  
Author(s):  
Marc V.L. DU CAJU ◽  
Raoul P. ROOMAN

ABSTRACT Conditions characterized by high levels of glucocorticoids are associated with poor growth. Serum somatomedin or insulin-like growth factor activity measured by cartilage bioassay systems is low, but is generally not accompanied by a fall in somatomedin concentration. Hydrocortisone and a synthetic analogue, dexamethasone, impaired the serum stimulated "in vitro" 35S sulphate and 3H-thymidine incorporation in porcine rib cartilage at physiological concentrations. Hydrocortisone added at a concentration of 0,1 μg/ml decreased the potency of normal serum to 50 % of controls. Dexamethasone was at least 10 times more potent. Removal of "in vitro" or "in vivo" administered hydrocortisone with dextran-coated charcoal restored the sulphate and thymidine activity to normal. We conclude that physiological amounts of glucocorticoids inhibit the "in vitro" porcine cartilage metabolism. Glucocorticoid administration "in vivo" does not abolish the activity of the cartilage stimulating effect of serum but affects cartilage metabolism directly or by the induction of locally produced inhibitors of cartilage metabolism.


1996 ◽  
Vol 148 (1) ◽  
pp. 43-50 ◽  
Author(s):  
M L Panno ◽  
D Sisci ◽  
M Salerno ◽  
M Lanzino ◽  
V Pezzi ◽  
...  

Abstract A possible role of tri-iodothyronine (T3) on the interplay between testicular steroids and Sertoli cells has been investigated on the basis of previous findings demonstrating a direct inhibitory influence of T3 on aromatase activity and oestradiol production in peripuberal Sertoli cells. In this context, the present study was focused on the effects of T3 on oestrogen receptor (ER) and androgen receptor (AR) contents in the cytosol and nucleus of Sertoli cells isolated from 2-, 3- and 4-week-old euthyroid, hypothyroid and hypothyroid treated rats. Hypothyroidism was induced by the oral administration of 0·025% methimazole (MMI) from birth until the rats were killed at 2, 3 and 4 weeks of age. Half of the MMI-treated animals were injected i.p. with l-tri-iodothyronine (T3; 3 μg/100 g body weight) during the last week before death. Sertoli cells from all groups were initially cultured under basal conditions for the first 24 h and subsequently in the presence of testosterone with or without T3 for an additional 24 h. Hypothyroidism was associated with severe impairment of body as well as testicular growth. Euthyroid ERs showed an elevated Kd (0·76 nm) which was similar in the different age groups investigated. The in vitro addition of T3 or testosterone induced a decrease in ER content and this decrease was greater after exposure to both hormones. In 2- and 3-week-old hypothyroid rats, ER content was markedly increased and was reversed in euthyroid rats when T3 was given in vivo. When ERs were assayed in the Sertoli cell nucleus and cytoplasm of 2- and 3-week-old animals, a strong relationship in ER content in the two cellular compartments was observed. Neither of the hormones tested seemed to affect the AR content in the nucleus significantly, while the in vitro addition of testosterone or T3 or both hormones together augmented the ARs in the cytosol to a greater extent, resulting in an increase in their total (cytosolic and nuclear) content in the cells. The present data suggest that T3 down-regulates ERs and up-regulates ARs in peripuberal Sertoli cells. The additive effect of testosterone and T3 in up-regulating ARs could possibly involve a role for T3 in influencing the androgen responsiveness of the Sertoli cells during spermatogenesis. Journal of Endocrinology (1996) 148, 43–50


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 524-530
Author(s):  
PA Janmey ◽  
SE Lind

Human blood depolymerizes filamentous (F-)actin. The interaction of actin filaments and monomers with human serum was studied by following the kinetics and extent of the depolymerization of pyrene-labeled F- actin and by analysis of serum proteins adhering to immobilized actin monomers. In physiologic Ca2+ concentrations, the depolymerization of F- actin proceeds in two stages: a rapid phase, attributed to direct severing of filaments by plasma gelsolin, and a slow phase attributed to the binding of actin monomers to vitamin D-binding protein (DBP). Without Ca2+, only the slow phase is observed. Human serum can completely depolymerize 10 to 18 mumol/L of actin, of which approximately 5 mumol/L occurs rapidly. Depolymerization can be accounted for by the normal serum concentrations of gelsolin and DBP. Fibrin(ogen) and fibronectin, which bind actin in vitro, do not contribute to the kinetics or extent of its depolymerization. Affinity chromatography and functional assays for the presence of gelsolin-actin complexes show that addition of G-actin to serum results in preferential formation of actin-DBP complexes, but that addition of F- actin to serum produces both gelsolin-actin complexes and DBP-actin complexes. The distinctive binding of actin monomers and polymers to these two serum proteins suggests a means by which their coordinated actions are maximized in vivo, from the standpoint of depolymerizing filaments and clearing monomers from the circulation.


Author(s):  
Thomas Labadie ◽  
Polly Roy

AbstractRecent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and observed that the majority of viruses are released in EVs, both in vitro and in the blood of infected animals. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome.Author summaryRecent discoveries of non-enveloped virus secreted in EVs opened the door to new developments in our understanding of the transmission and pathogenicity of these viruses. In particular, how these viruses hijack the host cellular secretion machinery, and the role of these EVs compared with free-virus particles remained to be explored. Here, we tackled these two aspects, by studying BTV, an emerging arthropod-borne virus causing epidemics worldwide. We showed that this virus is mainly released in EVs, in vivo and in the blood of infected animals, and that inhibition of the cell degradation machinery decreases the release of infectious EVs, but not free-virus particles. We found that BTV must neutralize the pH of lysosomes, which are important organelles of the cell degradation machinery, for efficient virus release in EVs. Our results highlight unique features for a virus released in EVs, explaining how BTV transits in lysosomes without being degraded. Interestingly, we observed that EVs are more infectious than free-virus particles, but only free-viruses are able to overcome the super-infection exclusion, which is a common cellular defense mechanism. In conclusion, our study stresses the dual role played by both forms, free and vesicular, in the virus life cycle.


2020 ◽  
Author(s):  
Ramona Meanti ◽  
Laura Rizzi ◽  
Elena Bresciani ◽  
Laura Molteni ◽  
Vittorio Locatelli ◽  
...  

AbstractHexarelin, a synthetic hexapeptide, protects cardiac and skeletal muscles by inhibiting apoptosis, both in vitro and in vivo. Moreover, evidence suggests that hexarelin could have important neuroprotective bioactivity.Oxidative stress and the generation of free radicals has been implicated in the etiologies of several neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and multiple sclerosis. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance the formation of other reactive oxygen species.The aim of this study was to examine the inhibitory influence of hexarelin on H2O2-induced apoptosis in Neuro-2A cells, a mouse neuroblastoma cell line. Our results indicate that H2O2 reduced the viability of Neuro-2A cells in a dose-related fashion. Furthermore, H2O2 induced significant changes in the morphology of Neuro-2A cells, reflected in the formation of apoptotic cell bodies, and an increase of nitric oxide (NO) production. Hexarelin effectively antagonized H2O2 oxidative damage to Neuro-2A cells as indicated by improved cell viability, normal morphology and reduced nitrite (NO2−) release. Hexarelin treatment of Neuro-2A cells also reduced mRNA levels of caspases−3 and −7 and those of the pro-apoptotic molecule Bax; by contrast, hexarelin treatment increased anti-apoptotic Bcl-2 mRNA levels. Hexarelin also reduced MAPKs phosphorylation induced by H2O2 and concurrently increased p-Akt protein expression.In conclusion, our results identify several neuroprotective and anti-apoptotic effects of hexarelin. These properties suggest that further investigation of hexarelin as a neuroprotective agent in an investigational and therapeutic context are merited.


Sign in / Sign up

Export Citation Format

Share Document