scholarly journals Insights into channel modulation mechanism of RYR1 mutants using Ca2+ imaging and molecular dynamics

2019 ◽  
Vol 152 (1) ◽  
Author(s):  
Toshiko Yamazawa ◽  
Haruo Ogawa ◽  
Takashi Murayama ◽  
Maki Yamaguchi ◽  
Hideto Oyamada ◽  
...  

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation–contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure–function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.

2001 ◽  
Vol 119 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Alexander Shtifman ◽  
Christopher W. Ward ◽  
Takeshi Yamamoto ◽  
Jianli Wang ◽  
Beth Olbinski ◽  
...  

DP4 is a 36-residue synthetic peptide that corresponds to the Leu2442-Pro2477 region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca2+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618–11625). We have investigated the effects of DP4 on local SR Ca2+ release events (Ca2+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca2+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca2+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca2+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca2+ release channel(s) generating the sparks. DP4 also increased [3H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca2+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca2+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg17 to Cys17 replacement (DP4mut), which corresponds to the Arg2458-to-Cys2458 mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg2+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg2+-free RyR(s), thus promoting channel opening and production of Ca2+ sparks.


2018 ◽  
Vol 19 (11) ◽  
pp. 3524 ◽  
Author(s):  
Guodong Hu ◽  
Xiu Yu ◽  
Yunqiang Bian ◽  
Zanxia Cao ◽  
Shicai Xu ◽  
...  

ToxIN is a triangular structure formed by three protein toxins (ToxNs) and three specific noncoding RNA antitoxins (ToxIs). To respond to stimuli, ToxI is preferentially degraded, releasing the ToxN. Thus, the dynamic character is essential in the normal function interactions between ToxN and ToxI. Here, equilibrated molecular dynamics (MD) simulations were performed to study the stability of ToxN and ToxI. The results indicate that ToxI adjusts the conformation of 3′ and 5′ termini to bind to ToxN. Steered molecular dynamics (SMD) simulations combined with the recently developed thermodynamic integration in 3nD (TI3nD) method were carried out to investigate ToxN unbinding from the ToxIN complex. The potentials of mean force (PMFs) and atomistic pictures suggest the unbinding mechanism as follows: (1) dissociation of the 5′ terminus from ToxN, (2) missing the interactions involved in the 3′ terminus of ToxI without three nucleotides (G31, A32, and A33), (3) starting to unfold for ToxI, (4) leaving the binding package of ToxN for three nucleotides of ToxI, (5) unfolding of ToxI. This work provides information on the structure-function relationship at the atomistic level, which is helpful for designing new potent antibacterial drugs in the future.


1998 ◽  
Vol 332 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Steven VAYRO ◽  
Bryan LO ◽  
Mel SILVERMAN

We have exploited two mutants of the rabbit intestinal Na+/glucose carrier SGLT1 to explore the structure/function relationship of this Na+/glucose transporter in COS-7 cells. A functional N-terminal myc-epitope-tagged SGLT1 protein was constructed and used to determine the plasma-membrane localization of SGLT1. The kinetic and specificity characteristics of the myc-tagged SGLT1 mutant were identical with those of wild-type SGLT1. Immunogold labelling and electron microscopy confirmed the topology of the N-terminal region to be extracellular. Expression of the SGLT1 A166C mutant in these cells showed diminished levels of Na+-dependent α-methyl-d-glucopyranoside transport activity compared with wild-type SGLT1. For SGLT1 A166C, Vmax was 0.92±0.08 nmol/min per mg of protein and Km was 0.98±0.13 mM; for wild-type SGLT1, Vmax was 1.98±0.47 nmol/min per mg of protein and Km was 0.36±0.16 mM. Significantly, phlorrhizin (phloridzin) binding experiments confirmed equal expression of Na+-dependent high-affinity phlorrhizin binding to COS-7 cells expressing SGLT1 A166C or wild-type SGLT1 (Bmax 1.55±0.18 and 1.69±0.57 pmol/mg of protein respectively); Kd values were 0.46±0.15 and 0.51±0.11 µM for SGLT1 A166C and wild-type SGLT1 respectively. The specificity of sugar interaction was unchanged by the A166C mutation. We conclude that the replacement of an alanine residue by cysteine at position 166 has a profound effect on transporter function, resulting in a decrease in transporter turnover rate by a factor of 2. Taken as a whole the functional changes observed by SGLT1 A166C are most consistent with the mutation having caused an altered Na+ interaction with the transporter.


2021 ◽  
Author(s):  
Caroline Marie Teresa Neumann ◽  
Lena Lindtoft Rosenbæk ◽  
Rasmus Kock Flygaard ◽  
Michael Habeck ◽  
Jesper Lykkegaard Karlsen ◽  
...  

The sodium-potassium-chloride transporter NKCC1 (SLC12A2) performs Na+-dependent Cl- and K+ ion uptake across plasma membranes. NKCC1 is important for regulating e.g. cell volume, hearing, blood pressure, and chloride gradients defining GABAergic and glycinergic signaling in brain. Here, we present a 2.6 Å resolution cryo-electron microscopy (cryo-EM) structure of human NKCC1 in the substrate-loaded (Na+, K+, 2 Cl-) and inward-facing conformation adopting an occluded state that has also been observed for the SLC6 type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provide a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- ion binding at the Cl2 site seems to undertake a structural role similar to a conserved glutamate of SLC6 transporters and may allow for chloride-sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations we describe the Na+ binding site and a putative Na+ release pathway along transmembrane helix 5. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.


2018 ◽  
Author(s):  
Aoife M Harbison ◽  
Lorna P Brosnan ◽  
Keith Fenlon ◽  
Elisa Fadda

AbstractFc glycosylation of human immunoglobulins G (IgGs) is essential for their structural integrity and activity. Interestingly, the specific nature of the Fc glycoforms is known to modulate the IgG effector function. Indeed, while core-fucosylation of IgG Fc-glycans greatly affects the antibody-dependent cell-mediated cytotoxicity (ADCC) function, with obvious repercussions in the design of therapeutic antibodies, sialylation can reverse the antibody inflammatory response, and galactosylation levels have been linked to aging, to the onset of inflammation, and to the predisposition to rheumatoid arthritis. Within the framework of a structure-to-function relationship, we have studied the role of the N-glycan sequence on its intrinsic conformational propensity. Here we report the results of a systematic study, based on extensive molecular dynamics (MD) simulations in excess of 62 µs of cumulative simulation time, on the effect of sequence on the structure and dynamics of increasingly larger, complex biantennary N-glycoforms, i.e. from chitobiose to the larger N-glycan species commonly found in the Fc region of human IgGs. Our results show that while core fucosylation and sialylation do not affect the intrinsic dynamics of the isolated (unbound) N-glycans, galactosylation of the α(1-6) arm shifts dramatically its conformational equilibrium from an outstretched to a folded conformation. These findings are in agreement with and can help rationalize recent experimental evidence showing a differential recognition of positional isomers in glycan array data and also the preference of sialyltransferase for the more reachable, outstretched α(1-3) arm in both isolated and Fc-bound N-glycans.


2018 ◽  
Vol 151 (3) ◽  
pp. 328-341 ◽  
Author(s):  
Juan M. Valdez Capuccino ◽  
Payal Chatterjee ◽  
Isaac E. García ◽  
Wesley M. Botello-Smith ◽  
Han Zhang ◽  
...  

A group of human mutations within the N-terminal (NT) domain of connexin 26 (Cx26) hemichannels produce aberrant channel activity, which gives rise to deafness and skin disorders, including keratitis-ichthyosis-deafness (KID) syndrome. Structural and functional studies indicate that the NT of connexin hemichannels is folded into the pore, where it plays important roles in permeability and gating. In this study, we explore the molecular basis by which N14K, an NT KID mutant, promotes gain of function. In macroscopic and single-channel recordings, we find that the N14K mutant favors the open conformation of hemichannels, shifts calcium and voltage sensitivity, and slows deactivation kinetics. Multiple copies of MD simulations of WT and N14K hemichannels, followed by the Kolmogorov–Smirnov significance test (KS test) of the distributions of interaction energies, reveal that the N14K mutation significantly disrupts pairwise interactions that occur in WT hemichannels between residue K15 of one subunit and residue E101 of the adjacent subunit (E101 being located at the transition between transmembrane segment 2 [TM2] and the cytoplasmic loop [CL]). Double mutant cycle analysis supports coupling between the NT and the TM2/CL transition in WT hemichannels, which is disrupted in N14K mutant hemichannels. KS tests of the α carbon correlation coefficients calculated over MD trajectories suggest that the effects of the N14K mutation are not confined to the K15–E101 pairs but extend to essentially all pairwise residue correlations between the NT and TM2/CL interface. Together, our data indicate that the N14K mutation increases hemichannel open probability by disrupting interactions between the NT and the TM2/CL region of the adjacent connexin subunit. This suggests that NT–TM2/CL interactions facilitate Cx26 hemichannel closure.


2020 ◽  
Vol 21 (17) ◽  
pp. 6339
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Sun Choi

Molecular dynamics (MD) simulation is a rigorous theoretical tool that when used efficiently could provide reliable answers to questions pertaining to the structure-function relationship of proteins. Data collated from protein dynamics can be translated into useful statistics that can be exploited to sieve thermodynamics and kinetics crucial for the elucidation of mechanisms responsible for the modulation of biological processes such as protein-ligand binding and protein-protein association. Continuous modernization of simulation tools enables accurate prediction and characterization of the aforementioned mechanisms and these qualities are highly beneficial for the expedition of drug development when effectively applied to structure-based drug design (SBDD). In this review, current all-atom MD simulation methods, with focus on enhanced sampling techniques, utilized to examine protein structure, dynamics, and functions are discussed. This review will pivot around computer calculations of protein-ligand and protein-protein systems with applications to SBDD. In addition, we will also be highlighting limitations faced by current simulation tools as well as the improvements that have been made to ameliorate their efficiency.


1993 ◽  
Vol 102 (3) ◽  
pp. 449-481 ◽  
Author(s):  
E Ríos ◽  
M Karhanek ◽  
J Ma ◽  
A González

A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88-118), and analogous to one proposed by Marks and Jones for voltage-dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium dependency of charge movement with voltage. The paradoxical slowing of charge movement by perchlorate also results from reciprocal effects of the channel on the allosterically coupled voltage sensors. The observations of the previous articles plus the simulations in this article constitute functional evidence of allosteric transmission.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5998 ◽  
Author(s):  
Sebastián Contreras-Riquelme ◽  
Jose-Antonio Garate ◽  
Tomas Perez-Acle ◽  
Alberto J.M. Martin

Protein structure is not static; residues undergo conformational rearrangements and, in doing so, create, stabilize or break non-covalent interactions. Molecular dynamics (MD) is a technique used to simulate these movements with atomic resolution. However, given the data-intensive nature of the technique, gathering relevant information from MD simulations is a complex and time consuming process requiring several computational tools to perform these analyses. Among different approaches, the study of residue interaction networks (RINs) has proven to facilitate the study of protein structures. In a RIN, nodes represent amino-acid residues and the connections between them depict non-covalent interactions. Here, we describe residue interaction networks in protein molecular dynamics (RIP-MD), a visual molecular dynamics (VMD) plugin to facilitate the study of RINs using trajectories obtained from MD simulations of proteins. Our software generates RINs from MD trajectory files. The non-covalent interactions defined by RIP-MD include H-bonds, salt bridges, VdWs, cation-π, π–π, Arginine–Arginine, and Coulomb interactions. In addition, RIP-MD also computes interactions based on distances between Cαs and disulfide bridges. The results of the analysis are shown in an user friendly interface. Moreover, the user can take advantage of the VMD visualization capacities, whereby through some effortless steps, it is possible to select and visualize interactions described for a single, several or all residues in a MD trajectory. Network and descriptive table files are also generated, allowing their further study in other specialized platforms. Our method was written in python in a parallelized fashion. This characteristic allows the analysis of large systems impossible to handle otherwise. RIP-MD is available at http://www.dlab.cl/ripmd.


2018 ◽  
Author(s):  
S. Natesh ◽  
J. R. Sachleben ◽  
T. R Sosnick ◽  
K. F. Freed ◽  
S. C. Meredith ◽  
...  

AbstractAggregation of Aβ peptides is important in the etiology of Alzheimer’s Disease (AD), an increasingly prevalent neurodegenerative disease. We ran multiple ∼ 300 ns all-atom explicit solvent molecular dynamics (MD) simulations starting from three NMR-based structural models of Aβ(1-40 residues) fibrils having 2-fold (pdb code 2LMN) or 3-fold rotational symmetry (2LMP, and 2M4J). The 2M4J structure is based on an AD brain-seeded fibril whereas 2LMP and 2LMN represent two all-synthetic fibrils. Fibrils are constructed to contain either 6 or an infinite number of layers made using periodic images. The 6 layer fibrils partially unravel over the simulation time, mainly at their ends, while infinitely long fibrils do not. Once formed, the D23-K28 salt bridges are very stable and form within and between chains. Fibrils tend to retain (2LMN and 2LMP) or develop (2M4J) a “stagger” or register shift of β-strands along the fibril axis. The brain-seeded fibril rapidly develops gaps at the sides of the fibril, which allows bidirectional flow of water and ions from the bulk phase in and out the central longitudinal core of the fibril. Similar but less marked changes were also observed for the 2LMP fibrils. The residues defining the gaps largely coincide with those demonstrated to have relatively rapid Hydrogen-Deuterium exchange in solid state NMR studies. These observations suggest that Aβ(1-40 residues) fibrils may act as aqueous pores that might disrupt water and ion fluxes if inserted into a cell membrane.


Sign in / Sign up

Export Citation Format

Share Document