scholarly journals Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate

2021 ◽  
Vol 153 (8) ◽  
Author(s):  
Peter Proks ◽  
Marcus Schewe ◽  
Linus J. Conrad ◽  
Shanlin Rao ◽  
Kristin Rathje ◽  
...  

The TREK subfamily of two-pore domain K+ (K2P) channels are inhibited by fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal targets of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. However, despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms underlying NFx inhibition remain elusive. NFx has previously been proposed to be a state-dependent inhibitor, but its binding site suggests many possible ways in which this positively charged drug might inhibit channel activity. Here we show that NFx exerts multiple effects on single-channel behavior that influence both the open and closed states of the channel and that the channel can become highly activated by 2-APB while remaining in the down conformation. We also show that the inhibitory effects of NFx are unrelated to its positive charge but can be influenced by agonists which alter filter stability, such as ML335, as well as by an intrinsic voltage-dependent gating process within the filter. NFx therefore not only inhibits channel activity by altering the equilibrium between up and down conformations but also can directly influence filter gating. These results provide further insight into the complex allosteric mechanisms that modulate filter gating in TREK K2P channels and highlight the different ways in which filter gating can be regulated to permit polymodal regulation.

2020 ◽  
Author(s):  
Peter Proks ◽  
Marcus Schewe ◽  
Linus J. Conrad ◽  
Shanlin Rao ◽  
Kristin Rathje ◽  
...  

ABSTRACTThe TREK subfamily of Two-Pore Domain (K2P) K+ channels are inhibited by low micromolar concentrations of fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal target of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. Yet despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms which underlie NFx inhibition remain elusive. Such investigations ideally require examining the effects of the drug on single channel behavior. However, wild-type TREK channels normally exhibit a very low open probability which makes analysis of their inhibition at the single channel level extremely challenging. In this study, we show how the unique behavior of single TREK-2 channels reconstituted in lipid bilayers can be used to study NFx inhibition in detail. Our results reveal the primary mechanism of NFx inhibition is a complex allosteric process that results in both a reduced open probability and single channel conductance. Furthermore, we show the transduction mechanism involved in NFx inhibition can be disrupted by the action of ML335, and can also be subject to desensitization. We also uncover several voltage-dependent effects of NFx inhibition. In addition, we propose a gating scheme that accounts these effects and which provide important insights into the action of agonists and antagonists on K2P channel function.


2003 ◽  
Vol 122 (3) ◽  
pp. 277-294 ◽  
Author(s):  
Alessio Accardi ◽  
Michael Pusch

The Torpedo Cl− channel, CLC-0, is inhibited by clofibric acid derivatives from the intracellular side. We used the slow gate-deficient mutant CLC-0C212S to investigate the mechanism of block by the clofibric acid–derivative p-chlorophenoxy-acetic acid (CPA). CPA blocks open channels with low affinity (KDO= 45 mM at 0 mV) and shows fast dissociation (koff = 490 s−1 at −140 mV). In contrast, the blocker binds to closed channels with higher affinity and with much slower kinetics. This state-dependent block coupled with the voltage dependence of the gating transitions results in a highly voltage-dependent inhibition of macroscopic currents (KD ∼1 mM at −140 mV; KD ∼65 mM at 60 mV). The large difference in CPA affinity of the open and closed state suggests that channel opening involves more than just a local conformational rearrangement. On the other hand, in a recent work (Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Science. 300:108–112) it was proposed that the conformational change underlying channel opening is limited to a movement of a single side chain. A prediction of this latter model is that mutations that influence CPA binding to the channel should affect the affinities for an open and closed channel in a similar manner since the general structure of the pore remains largely unchanged. To test this hypothesis we introduced point mutations in four residues (S123, T471, Y512, and K519) that lie close to the intracellular pore mouth or to the putative selectivity filter. Mutation T471S alters CPA binding exclusively to closed channels. Pronounced effects on the open channel block are observed in three other mutants, S123T, Y512A, and K519Q. Together, these results collectively suggest that the structure of the CPA binding site is different in the open and closed state. Finally, replacement of Tyr 512, a residue directly coordinating the central Cl− ion in the crystal structure, with Phe or Ala has very little effect on single channel conductance and selectivity. These observations suggest that channel opening in CLC-0 consists in more than a movement of a side chain and that other parts of the channel and of the selectivity filter are probably involved.


2019 ◽  
Vol 295 (2) ◽  
pp. 610-618
Author(s):  
Ehsan Nematian-Ardestani ◽  
Firdaus Abd-Wahab ◽  
Franck C. Chatelain ◽  
Han Sun ◽  
Marcus Schewe ◽  
...  

Two-pore domain K+ (K2P) channels have many important physiological functions. However, the functional properties of the TWIK-1 (K2P1.1/KCNK1) K2P channel remain poorly characterized because heterologous expression of this ion channel yields only very low levels of functional activity. Several underlying reasons have been proposed, including TWIK-1 retention in intracellular organelles, inhibition by posttranslational sumoylation, a hydrophobic barrier within the pore, and a low open probability of the selectivity filter (SF) gate. By evaluating these potential mechanisms, we found that the latter dominates the low intrinsic functional activity of TWIK-1. Investigating this further, we observed that the low activity of the SF gate appears to arise from the inefficiency of K+ in stabilizing an active (i.e. conductive) SF conformation. In contrast, other permeant ion species, such as Rb+, NH4+, and Cs+, strongly promoted a pH-dependent activated conformation. Furthermore, many K2P channels are activated by membrane depolarization via an SF-mediated gating mechanism, but we found here that only very strong nonphysiological depolarization produces voltage-dependent activation of heterologously expressed TWIK-1. Remarkably, we also observed that TWIK-1 Rb+ currents are potently inhibited by intracellular K+ (IC50 = 2.8 mm). We conclude that TWIK-1 displays unique SF gating properties among the family of K2P channels. In particular, the apparent instability of the conductive conformation of the TWIK-1 SF in the presence of K+ appears to dominate the low levels of intrinsic functional activity observed when the channel is expressed at the cell surface.


2010 ◽  
Vol 298 (2) ◽  
pp. C274-C282 ◽  
Author(s):  
Juan Xing ◽  
Kevin Strange

The Caenorhabditis elegans intestinal epithelium generates rhythmic inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations that control muscle contractions required for defecation. Two highly Ca2+-selective transient receptor potential (TRP) melastatin (TRPM) channels, GON-2 and GTL-1, function with PLCγ in a common signaling pathway that regulates IP3-dependent intracellular Ca2+ release. A second PLC, PLCβ, is also required for IP3-dependent Ca2+ oscillations, but functions in an independent signaling mechanism. PLCγ generates IP3 that regulates IP3 receptor activity. We demonstrate here that PLCγ via hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) also regulates GON-2/GTL-1 function. Knockdown of PLCγ but not PLCβ activity by RNA interference (RNAi) inhibits channel activity ∼80%. Inhibition is fully reversed by agents that deplete PIP2 levels. PIP2 added to the patch pipette has no effect on channel activity in PLCγ RNAi cells. However, in control cells, 10 μM PIP2 inhibits whole cell current ∼80%. Channel inhibition by phospholipids is selective for PIP2 with an IC50 value of 2.6 μM. Elevated PIP2 levels have no effect on channel voltage and Ca2+ sensitivity and likely inhibit by reducing channel open probability, single-channel conductance, and/or trafficking. We conclude that hydrolysis of PIP2 by PLCγ functions in the activation of both the IP3 receptor and GON-2/GTL-1 channels. GON-2/GTL-1 functions as the major intestinal cell Ca2+ influx pathway. Calcium influx through the channel feedback regulates its activity and likely functions to modulate IP3 receptor function. PIP2-dependent regulation of GON-2/GTL-1 may provide a mechanism to coordinate plasma membrane Ca2+ influx with PLCγ and IP3 receptor activity as well as intracellular Ca2+ store depletion.


2016 ◽  
Vol 113 (25) ◽  
pp. 6991-6996 ◽  
Author(s):  
Jiusheng Yan ◽  
Qin Li ◽  
Richard W. Aldrich

Ion channels regulate ion flow by opening and closing their pore gates. K+ channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel’s activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K+ together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K+ channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca2+]i) and recovered with depolarized membrane potentials or elevated [Ca2+]i. Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel’s normal closing may represent an early conformational stage of C-type inactivation.


1987 ◽  
Vol 89 (6) ◽  
pp. 873-903 ◽  
Author(s):  
W N Green ◽  
L B Weiss ◽  
O S Andersen

The guanidinium toxin-induced inhibition of the current through voltage-dependent sodium channels was examined for batrachotoxin-modified channels incorporated into planar lipid bilayers that carry no net charge. To ascertain whether a net negative charge exists in the vicinity of the toxin-binding site, we studied the channel closures induced by tetrodotoxin (TTX) and saxitoxin (STX) over a wide range of [Na+]. These toxins carry charges of +1 and +2, respectively. The frequency and duration of the toxin-induced closures are voltage dependent. The voltage dependence was similar for STX and TTX, independent of [Na+], which indicates that the binding site is located superficially at the extracellular surface of the sodium channel. The toxin dissociation constant, KD, and the rate constant for the toxin-induced closures, kc, varied as a function of [Na+]. The Na+ dependence was larger for STX than for TTX. Similarly, the addition of tetraethylammonium (TEA+) or Zn++ increased KD and decreased kc more for STX than for TTX. These differential effects are interpreted to arise from changes in the electrostatic potential near the toxin-binding site. The charges giving rise to this potential must reside on the channel since the bilayers had no net charge. The Na+ dependence of the ratios KDSTX/KDTTX and kcSTX/kcTTX was used to estimate an apparent charge density near the toxin-binding site of about -0.33 e X nm-2. Zn++ causes a voltage-dependent block of the single-channel current, as if Zn++ bound at a site within the permeation path, thereby blocking Na+ movement. There was no measurable interaction between Zn++ at its blocking site and STX or TTX at their binding site, which suggests that the toxin-binding site is separate from the channel entrance. The separation between the toxin-binding site and the Zn++ blocking site was estimated to be at least 1.5 nm. A model for toxin-induced channel closures is proposed, based on conformational changes in the channel subsequent to toxin binding.


1997 ◽  
Vol 109 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Anthony A. Fodor ◽  
Sharona E. Gordon ◽  
William N. Zagotta

Local anesthetics are a diverse group of ion channel blockers that can be used to probe conformational changes in the pore. We examined the effects of the local anesthetic tetracaine on rod and olfactory cyclic nucleotide-gated channels expressed from subunit 1 in Xenopus oocytes. We found that 40 μM tetracaine effectively blocked the bovine rod channel but not the rat olfactory channel at saturating concentrations of cGMP. By testing chimeric channels containing regions of sequence from both rod and olfactory channels, we found that determinants of apparent affinity for tetracaine at saturating cGMP did not map to any one region of the channel sequence. Rather, the differences in apparent affinity could be explained by differences between the chimeras in the free energy of the opening allosteric transition. If a channel construct (such as the rod channel) spent appreciable time in the closed state at saturating cGMP, then it had a high apparent affinity for tetracaine. If, on the other hand, a channel construct (such as the olfactory channel) spent little time in the closed state at saturating cGMP, then it had a low apparent affinity for tetracaine. Furthermore, tetracaine became more effective at low concentrations of cGMP and at saturating concentrations of cAMP, conditions which permit the channels to spend more time in the closed configuration. These results were well fit by a model in which tetracaine binds more tightly to the closed channel than to the open channel. Dose-response curves for tetracaine in the presence of saturating cGMP are well fit with a Michaelis-Menten binding scheme Indicating that a single tetracaine molecule is sufficient to produce block. In addition, tetracaine block is voltage dependent with an effective zδ of +0.56. These data are consistent with a pore-block hypothesis. The finding that tetracaine is a state-dependent pore blocker suggests that the inner mouth of the pore of cyclic nucleotide-gated channels undergoes a conformational change during channel opening.


2020 ◽  
Vol 6 (50) ◽  
pp. eabd6798
Author(s):  
Po Wei Kang ◽  
Annie M. Westerlund ◽  
Jingyi Shi ◽  
Kelli McFarland White ◽  
Alex K. Dou ◽  
...  

Calmodulin (CaM) and phosphatidylinositol 4,5-bisphosphate (PIP2) are potent regulators of the voltage-gated potassium channel KCNQ1 (KV7.1), which conducts the cardiac IKs current. Although cryo–electron microscopy structures revealed intricate interactions between the KCNQ1 voltage-sensing domain (VSD), CaM, and PIP2, the functional consequences of these interactions remain unknown. Here, we show that CaM-VSD interactions act as a state-dependent switch to control KCNQ1 pore opening. Combined electrophysiology and molecular dynamics network analysis suggest that VSD transition into the fully activated state allows PIP2 to compete with CaM for binding to VSD. This leads to conformational changes that alter VSD-pore coupling to stabilize open states. We identify a motif in the KCNQ1 cytosolic domain, which works downstream of CaM-VSD interactions to facilitate the conformational change. Our findings suggest a gating mechanism that integrates PIP2 and CaM in KCNQ1 voltage-dependent activation, yielding insights into how KCNQ1 gains the phenotypes critical for its physiological function.


1991 ◽  
Vol 97 (2) ◽  
pp. 393-412 ◽  
Author(s):  
R Mejía-Alvarez ◽  
M Fill ◽  
E Stefani

Single-channel properties of dihydropyridine (DHP)-sensitive calcium channels isolated from transverse tubular (T-tube) membrane of skeletal muscle were explored. Single-channel activity was recorded in planar lipid bilayers after fusion of highly purified rabbit T-tube microsomes. Two populations of DHP-sensitive calcium channels were identified. One type of channel (noninactivating) was active (2 microM +/- Bay K 8644) at steady-state membrane potentials and has been studied in other laboratories. The second type of channel (inactivating) was transiently activated during voltage pulses and had a very low open probability (Po) at steady-state membrane potentials. Inactivating channel activity was observed in 47.3% of the experiments (n = 84 bilayers). The nonstationary kinetics of this channel was determined using a standard voltage pulse (HP = -50 mV, pulse to 0 mV). The time constant (tau) of channel activation was 23 ms. During the mV). The time constant (tau) of channel activation was 23 ms. During the pulse, channel activity decayed (inactivated) with a tau of 3.7 s. Noninactivating single-channel activity was well described by a model with two open and two closed states. Inactivating channel activity was described by the same model with the addition of an inactivated state as proposed for cardiac muscle. The single-channel properties were compared with the kinetics of DHP-sensitive inward calcium currents (ICa) measured at the cellular level. Our results support the hypothesis that voltage-dependent inactivation of single DHP-sensitive channels contributes to the decay of ICa.


1996 ◽  
Vol 270 (1) ◽  
pp. C276-C285 ◽  
Author(s):  
Y. H. Chen ◽  
R. L. DeHaan

The voltage dependence of junctional conductance (Gj) and the unitary channel behavior of junctions in most pairs of 3-day, 7-day, and 18-day embryonic chick heart cells are symmetrical, i.e., they are independent of the direction of polarization of junctional potential (Vj). With either cell depolarized relative to its neighbor, unitary channel events have a maximal unit conductance (yj) near 240 pS and five substates at nearly equal 40-pS increments down to near 40 pS (6, 9). Using the dual patch-clamp technique, we demonstrate here that, in a fraction of such cell pairs, Vj-dependent channel kinetics are asymmetric. Depolarization of one cell causes a larger and faster voltage-dependent decline in Gj than the same depolarization of the other cell. In a typical asymmetric preparation, depolarization of the strongly Vj-dependent side caused an immediate series of 47 +/- 16 pS closing steps in single-channel current (ij), followed by virtual cessation of channel activity. After depolarization of the less Vj-sensitive side, channel activity (56 +/- 13 pS) continues for many seconds. The large-conductance states (160-240 pS) observed in the electrically symmetric junctions were absent from the asymmetric preparations. In these cell pairs, connexin (Cx) 42, Cx43, and Cx45 could be immunolocalized at the junctional surfaces. We postulate that the asymmetry of voltage dependence in some cell pairs results from a preponderance of heterochannels formed from these different connexins. The frequency of asymmetric pairs obtained from 3-day, 7-day, and 18-day embryonic hearts was 50% (4/8), 24% (6/25), and 12.5% (1/8), suggesting that the fraction of heterochannels in the junctions decreases with cardiac development.


Sign in / Sign up

Export Citation Format

Share Document