scholarly journals Two modes of gating during late Na+ channel currents in frog sartorius muscle.

1986 ◽  
Vol 87 (2) ◽  
pp. 305-326 ◽  
Author(s):  
J B Patlak ◽  
M Ortiz

Na+ currents were measured during 0.4-s depolarizing pulses using the cell-attached variation of the patch-clamp technique. Patches on Cs-dialyzed segments of sartorius muscle of Rana pipiens contained an estimated 25-500 Na+ channels. Three distinct types of current were observed after the pulse onset: a large initial surge of inward current that decayed within 10 ms (early currents), a steady "drizzle" of isolated, brief, inward unitary currents (background currents), and occasional "cloudbursts" of tens to hundreds of sequential unitary inward currents (bursts). Average late currents (background plus bursts) were 0.12% of peak early current amplitude at -20 mV. 85% of the late currents were carried by bursting channels. The unit current amplitude was the same for all three types of current, with a conductance of 10.5 pS and a reversal potential of +74 mV. The magnitudes of the three current components were correlated from patch to patch, and all were eliminated by slow inactivation. We conclude that all three components were due to Na+ channel activity. The mean open time of the background currents was approximately 0.25 ms, and the channels averaged 1.2 openings for each event. Neither the open time nor the number of openings of background currents was strongly sensitive to membrane potential. We estimated that background openings occurred at a rate of 0.25 Hz for each channel. Bursts occurred once each 2,000 pulses for each channel (assuming identical channels). The open time during bursts increased with depolarization to 1-2 ms at -20 mV, whereas the closed time decreased to less than 20 ms. The fractional open time during bursts was fitted with m infinity 3 using standard Na+ channel models. We conclude that background currents are caused by a return of normal Na+ channels from inactivation, while bursts are instances where the channel's inactivation gate spontaneously loses its function for prolonged periods.

1988 ◽  
Vol 92 (4) ◽  
pp. 413-430 ◽  
Author(s):  
J B Patlak

The currents through single Na+ channels were recorded from dissociated cells of the flexor digitorum brevis muscle of the mouse. At 15 degrees C the prolonged bursts of Na+ channel openings produced by application of the drug DPI 201-106 had brief sojourns to subconductance levels. The subconductance events were relatively rare and brief, but could be identified using a new technique that sorts amplitude estimates based on their variance. The resulting "levels histogram" had a resolution of the conductance levels during channel activity that was superior to that of standard amplitude histograms. Cooling the preparation to 0 degrees C prolonged the subconductance events, and permitted further quantitative analysis of their amplitudes, as well as clear observations of single-channel subconductance events from untreated Na+ channels. In all cases the results were similar: a subconductance level, with an amplitude of roughly 35% of the fully open conductance and similar reversal potential, was present in both drug-treated and normal Na+ channels. Drug-treated channels spent approximately 3-6% of their total open time in the subconductance state over a range of potentials that caused the open probability to vary between 0.1 and 0.9. The summed levels histograms from many channels had a distinctive form, with broader, asymmetrical open and substate distributions compared with those of the closed state. Individual subconductance events to levels other than the most common 35% were also observed. I conclude that subconductance events are a normal subset of the open state of Na+ channels, whether or not they are drug treated. The subconductance events may represent a conformational alteration of the channel that occurs when it conducts ions.


2010 ◽  
Vol 113 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Sho-Ya Wang ◽  
Joanna Calderon ◽  
Ging Kuo Wang

Background Duloxetine is a mixed serotonin-norepinephrine reuptake inhibitor used for major depressive disorder. Duloxetine is also beneficial for patients with diabetic peripheral neuropathy and with fibromyalgia, but how it works remains unclear. Methods We used the whole cell, patch clamp technique to test whether duloxetine interacts with the neuronal Nav1.7 Na+ channel as a potential target. Resting and inactivated Nav1.7 Na+ channel block by duloxetine were measured by conventional pulse protocols in transfected human embryonic kidney cells. The open-channel block was determined directly using inactivation-deficient mutant Nav1.7 Na+ channels. Results The 50% inhibitory concentration (IC50) of duloxetine for the resting and inactivated wild-type hNav1.7 Na+ channel were 22.1+/-0.4 and 1.79+/-0.10 microM, respectively (mean+/-SE, n=5). The IC50 for the open Na+ channel was 0.25+/-0.02 microM (n=5), as determined by the block of persistent late Nav1.7 Na+ currents. Similar open-channel block by duloxetine was found in the muscle Nav1.4 isoform (IC50=0.51+/-0.05 microM; n=5). Block by duloxetine appeared via the conserved local anesthetic receptor as determined by site-directed mutagenesis. Finally, duloxetine elicited strong use-dependent block of neuronal transient Nav1.7 Na+ currents during repetitive stimulations. Conclusions Duloxetine blocks persistent late Nav1.7 Na+ currents preferentially, which may in part account for its analgesic action.


1984 ◽  
Vol 84 (3) ◽  
pp. 361-377 ◽  
Author(s):  
D Yamamoto ◽  
J Z Yeh

The kinetics of 9-aminoacridine (9-AA) block of single Na channels in neuroblastoma N1E-115 cells were studied using the gigohm seal, patch clamp technique, under the condition in which the Na current inactivation had been eliminated by treatment with N-bromoacetamide (NBA). Following NBA treatment, the current flowing through individual Na channels was manifested by square-wave open events lasting from several to tens of milliseconds. When 9-AA was applied to the cytoplasmic face of Na channels at concentrations ranging from 30 to 100 microM, it caused repetitive rapid transitions (flickering) between open and blocked states within single openings of Na channels, without affecting the amplitude of the single channel current. The histograms for the duration of blocked states and the histograms for the duration of open states could be fitted with a single-exponential function. The mean open time (tau o) became shorter as the drug concentration was increased, while the mean blocked time (tau b) was concentration independent. The association (blocking) rate constant, kappa, calculated from the slope of the curve relating the reciprocal mean open time to 9-AA concentration, showed little voltage dependence, the rate constant being on the order of 1 X 10(7) M-1s-1. The dissociation (unblocking) rate constant, l, calculated from the mean blocked time, was strongly voltage dependent, the mean rate constant being 214 s-1 at 0 mV and becoming larger as the membrane being hyperpolarized. The voltage dependence suggests that a first-order blocking site is located at least 63% of the way through the membrane field from the cytoplasmic surface. The equilibrium dissociation constant for 9-AA to block the Na channel, defined by the relation of l/kappa, was calculated to be 21 microM at 0 mV. Both tau -1o and tau -1b had a Q10 of 1.3, which suggests that binding reaction was diffusion controlled. The burst time in the presence of 9-AA, which is the sum of open times and blocked times, was longer than the lifetime of open channels in the absence of drug. All of the features of 9-AA block of single Na channels are compatible with the sequential model in which 9-AA molecules block open Na channels, and the blocked channels could not close until 9-AA molecules had left the blocking site in the channels.


1996 ◽  
Vol 270 (3) ◽  
pp. F391-F397 ◽  
Author(s):  
L. M. Satlin ◽  
L. G. Palmer

Net Na+ absorption in microperfused rabbit cortical collecting ducts (CCDs) is low during the 1st wk of postnatal life, increasing substantially thereafter [L. M. Satlin. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F57-F65, 1994]. To establish whether the low rate of Na+ absorption observed immediately after birth is due to a low apical Na+ permeability of the neonatal principal cell, we used the patch-clamp technique in split-open CCDs isolated from maturing rabbits to estimate conductance, number (N), and open probability (Po) of apical Na+ channels in principal cells. With LiCl in the pipette and a NaCl or potassium gluconate solution, warmed to 37 degrees C, in the bath, inward currents with a conductance of approximately 11 pS (n = 23) were observed in 17% of cell-attached patches at 1 wk, 41% of patches at 2 wk, and 43% of patches at 5 wk. The mean N per patch in the 1st wk (0.22 +/- 0.09; n = 36) was significantly less than that observed in the 2nd (1.38 +/- 0.39; n = 34) and 5th (1.24 +/- 0.37; n = 21) wk of life. Po, studied at positive pipette voltages, was significantly lower in the 1st wk (0.085 +/- 0.035; n = 5) than in the 2nd wk (0.345 +/- 0.063; n = 9) and 5th wk (0.291 +/- 0.058; n = 4). To confirm that the 11-pS channel represented the amiloride-sensitive apical Na+ channel, cell-attached patches in CCDs isolated from 2-wk-old rabbits were studied with 0.5 microM amiloride added to the LiCl pipette solution. Amiloride led to > 90% reductions in mean open and closed times of the 11-pS conductance, consistent with blockade of the channel. These data indicate that N and Po of apical amiloride-sensitive Na+ channels in principal cells increase significantly after birth.


1998 ◽  
Vol 76 (10-11) ◽  
pp. 1041-1050 ◽  
Author(s):  
Michael E O'Leary

Human heart (hH1), human skeletal muscle (hSkM1), and rat brain (rIIA) Na channels were expressed in cultured cells and the activation and inactivation of the whole-cell Na currents measured using the patch clamp technique. hH1 Na channels were found to activate and inactivate at more hyperpolarized voltages than hSkM1 and rIIA. The conductance versus voltage and steady state inactivation relationships have midpoints of -48 and -92 mV (hH1), -28 and -72 mV (hSkM1), and -22 and -61 mV (rIIA). At depolarized voltages, where Na channels predominately inactivate from the open state, the inactivation of hH1 is 2-fold slower than that of hSkM1 and rIIA. The recovery from fast inactivation of all three isoforms is well described by a single rapid component with time constants at -100 mV of 44 ms (hH1), 4.7 ms (hSkM1), and 7.6 ms (rIIA). After accounting for differences in voltage dependence, the kinetics of activation, inactivation, and recovery of hH1 were found to be generally slower than those of hSkM1 and rIIA. Modeling of Na channel gating at hyperpolarized voltages where the channel does not open suggests that the slow rate of recovery from inactivation of hH1 accounts for most of the differences in the steady-state inactivation of these Na channels.Key words: cardiac, neuronal, skeletal muscle, sodium channel.


1982 ◽  
Vol 79 (5) ◽  
pp. 739-758 ◽  
Author(s):  
D R Matteson ◽  
C M Armstrong

We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, steady state current amplitude has a Q10 of 2.3. Na currents generated at large positive voltages sometimes exhibit a biphasic activation pattern. The first phase activates rapidly and partially inactivates and is followed by a secondary slow current increase that lasts several milliseconds. Peak Na current amplitude can be increased by delivering large positive prepulses, an effect that is more pronounced at low temperatures. The slow activation phase is eliminated after a positive prepulse. The results are consistent with the hypothesis that there are two forms of the Na channel: (a) rapidly activating channels that completely inactivate, and (b) slowly activating "sleepy" channels that inactivate slowly if at all. Some fast channels are assumed to be converted to sleepy channels by cooling, possibly because of a phase transition in the membrane. The existence of sleepy channels complicates the determination of the Q10 of gating parameters and single-channel conductance.


1994 ◽  
Vol 104 (5) ◽  
pp. 801-820 ◽  
Author(s):  
K Benndorf

Single Na channel currents were recorded in cell-attached patches of mouse ventricular myocytes with an improved patch clamp technique. Using patch pipettes with a pore diameter in the range of 200 nm, seals with a resistance of up to 4 T omega were obtained. Under those conditions, total noise could be reduced to levels as low as 0.590 pA rms at 20 kHz band width. At this band width, properties of single-channel Na currents were studied at 35 degrees C. Six out of a total of 23 patches with teraohm seals contained channel activity and five of these patches contained one and only one active channel. Amplitude histograms excluding transition points showed heterogenous distributions of levels. In one patch, part of the openings was approximately Gaussian distributed at different potentials yielding a slope conductance of 27 pS. The respective peak open probability at -10 mV was 0.26. The mean open time was determined at voltages between -60 and -10 mV by evaluation of the distribution of the event-related gaps in the center of the baseline noise to be approximately 40 microseconds at -60 mV and 50-74 microseconds between -50 and -10 mV. It is concluded that single cardiac Na channels open at 35 degrees C frequently with multiple levels and with open times in the range of several tens of microseconds.


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1994 ◽  
Vol 72 (1) ◽  
pp. 349-359 ◽  
Author(s):  
O. Matzner ◽  
M. Devor

1. We used the tested fiber method to record from single myelinated afferents axons ending in a chronic nerve injury site (neuroma) in the rat sciatic nerve or L4,5 dorsal root. Axons were chosen for study that fired spontaneously with a stable tonic or interrupted (bursty) autorhythmic firing pattern. 2. Agents that block voltage-sensitive Na+ channels [tetrodotoxin (TTX), lidocaine], voltage-sensitive Ca2+ channels (Cd2+, Co2+, Ni2+, verapamil, D600, nifedipine, and fluarizine), volt-age-sensitive K+ channels [tetraethylammonium (TEA), 4-aminopyridine (4-AP)], and Ca(2+)-activated K+ channels (gK+Ca2+;quinidine, apamine) were applied topically to the neuroma. Effects on baseline rhythmogenesis and on the duty cycle of bursting were documented. Spike pattern analysis was used to determine whether changes in firing frequency were associated with changes in impulse initiation (electrogenesis), or resulted from (partial) block of impulse propagation downstream from the site of electrogenesis. Effects of veratridine were also noted. 3. Na+ channel blockers consistently quenched neuroma firing, and they did so by suppressing the process of impulse initiation. Only rarely was propagation block the dominant process. In bursty fibers the duration of on-periods shortened as the duration of off-periods lengthened, without a significant change in the baseline interspike interval (ISI). Veratridine accelerated firing, also via the impulse generating process. 4. Ca2+ channel blockers had essentially no effect on baseline firing rate (i.e., ISI). 5. Ca2+ channel blockers, as well as blockers of gK+Ca2+, had substantial, but inconsistent effects on burst pattern. It is not clear whether this reflects variability in the experimental conditions, or heterogeneity among the fibers sampled. 6. Blockade of K+ channels failed to evoke rhythmogenesis in acutely cut axons as it does in chronically injured axons, even in the presence of veratridine. This is consistent with other evidence that ectopic neuroma firing depends on postinjury remodeling of membrane electrical properties. 7. The data indicate that, in chronically injured axons, the inward currents that underly electrogenicity, enable ectopic discharge, and, together with outward K+ currents, set the fundamental firing rhythm (ISI), operate primarily with the use of voltage-sensitive Na+ rather than Ca2+ channels. 8. The on-off duty cycle in bursty fibers was affected by Na+ channel ligands and also, although less so, and less consistently by, Ca2+ channel ligands. This indicates that both may play a role in the slow modulations of membrane potential that presumably underly interrupted autorhythmicity.


Sign in / Sign up

Export Citation Format

Share Document