scholarly journals T Cell–Tropic Simian Immunodeficiency Virus (SIV) and Simian‐Human Immunodeficiency Viruses Are Readily Transmitted by Vaginal Inoculation of Rhesus Macaques, and Langerhans' Cells of the Female Genital Tract Are Infected with SIV

1999 ◽  
Vol 179 (s3) ◽  
pp. S413-S417 ◽  
Author(s):  
Christopher J. Miller ◽  
Jinjie Hu
2008 ◽  
Vol 82 (17) ◽  
pp. 8529-8536 ◽  
Author(s):  
Pamela P. Gumbi ◽  
Nonhlanhla N. Nkwanyana ◽  
Alfred Bere ◽  
Wendy A. Burgers ◽  
Clive M. Gray ◽  
...  

ABSTRACT The female genital tract is the major route of heterosexual human immunodeficiency virus (HIV) acquisition and transmission. Here, we investigated whether HIV-specific CD8 T-cell-mediated immune responses could be detected in the genital mucosa of chronically HIV-infected women and whether these were associated with either local mucosal HIV shedding or local immune factors. We found that CD8+ T-cell gamma interferon responses to Gag were detectable at the cervix of HIV-infected women but that the magnitude of genital responses did not correlate with those similarly detected in blood. This indicates that ex vivo HIV responses in one compartment may not be predictive of those in the other. We found that increased genital tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) levels correlated significantly with levels of Gag-specific CD8+ T cells at the cervix. Women who were detectably shedding virus in the genital tract had significantly increased cervical levels of TNF-α, IL-1β, IL-6, and IL-8 compared to women who were not detectably shedding virus. We were, however, unable to detect any association between the magnitude of cervical HIV-specific responses and mucosal HIV shedding. Our results support the hypothesis that proinflammatory cytokines in the female genital tract may promote HIV replication and shedding. In addition, we further show that inflammatory cytokines are associated with increased levels of HIV-specific CD8 effector cells at the genital mucosa but that these were not able to control genital HIV shedding.


2003 ◽  
Vol 77 (2) ◽  
pp. 1245-1256 ◽  
Author(s):  
Lisa A. Chakrabarti ◽  
Karin J. Metzner ◽  
Tijana Ivanovic ◽  
Hua Cheng ◽  
Jean Louis-Virelizier ◽  
...  

ABSTRACT The live, attenuated vaccine simian immunodeficiency virus SIVmac239Δnef efficiently protects rhesus macaques against infection with wild-type SIVmac but occasionally causes CD4+ T-cell depletion and progression to simian AIDS (SAIDS). Virus recovered from a vaccinated macaque (Rh1490) that progressed to SAIDS had acquired an additional deletion in the nef gene, resulting in a frameshift that restored the original nef open reading frame (R. I. Connor, D. C. Montefiori, J. M. Binley, J. P. Moore, S. Bonhoeffer, A. Gettie, E. A. Fenamore, K. E. Sheridan, D. D. Ho, P. J. Dailey, and P. A. Marx, J. Virol. 72:7501-7509, 1998). Intravenous inoculation of the Rh1490 viral isolate into four naive rhesus macaques induced CD4+ T-cell depletion and disease in three out of four animals within 2 years, indicating a restoration of virulence. A DNA fragment encompassing the truncated nef gene amplified from the Rh1490 isolate was inserted into the genetic backbone of SIVmac239. The resulting clone, SIVmac239-Δ2nef, expressed a Nef protein of approximately 23 kDa, while the original SIVmac239Δnef clone expressed a shorter protein of 8 kDa. The revertant form of Nef did not cause downregulation of CD4, CD3, or major histocompatibility complex class I. The infectivity of SIVmac239-Δ2nef was similar to that of SIVmac239Δnef in single-cycle assays using indicator cell lines. In contrast, SIVmac239-Δ2nef replicated more efficiently than SIVmac239Δnef in peripheral blood mononuclear cell (PBMC) cultures infected under unstimulated conditions. The p27 Gag antigen levels in SIVmac239-Δ2nef-infected cultures were still lower than those obtained with wild-type SIVmac239, consistent with a partial recovery of Nef function. The transcriptional activity of long terminal repeat (LTR)-luciferase constructs containing the nef deletions did not differ markedly from that of wild-type LTR. Introduction of a premature stop codon within Nef-Δ2 abolished the replicative advantage in PBMCs, demonstrating that the Nef-Δ2 protein, rather than the structure of the U3 region of the LTR, was responsible for the increase in viral replication. Taken together, these results show that SIV with a deletion in the nef gene can revert to virulence and that expression of a form of nef with multiple deletions may contribute to this process by increasing viral replication.


Immunology ◽  
2006 ◽  
Vol 117 (2) ◽  
pp. 220-228 ◽  
Author(s):  
Rafael Jimenez-Flores ◽  
Rene Mendez-Cruz ◽  
Jorge Ojeda-Ortiz ◽  
Rebeca Munoz-Molina ◽  
Oscar Balderas-Carrillo ◽  
...  

2019 ◽  
Author(s):  
Avid Mohammadi ◽  
Sareh Bagherichimeh ◽  
Azadeh Fazel ◽  
Elizabeth Tevlin ◽  
Wangari Tharao ◽  
...  

1998 ◽  
Vol 178 (5) ◽  
pp. 1343-1351 ◽  
Author(s):  
Lena Al‐Harthi ◽  
Gregory T. Spear ◽  
Farhad B. Hashemi ◽  
Alan Landay ◽  
Beverly E. Sha ◽  
...  

2006 ◽  
Vol 80 (2) ◽  
pp. 663-670 ◽  
Author(s):  
S. M. Murray ◽  
L. J. Picker ◽  
M. K. Axthelm ◽  
M. L. Linial

ABSTRACT Foamy viruses (FV) are the oldest known genus of retroviruses and have persisted in nonhuman primates for over 60 million years. FV are efficiently transmitted, leading to a lifelong nonpathogenic infection. Transmission is thought to occur through saliva, but the detailed mechanism is unknown. Interestingly, this persistent infection contrasts with the rapid cytopathicity caused by FV in vitro, suggesting a host defense against FV. To better understand the tissue specificity of FV replication and host immunologic defense against FV cytopathicity, we quantified FV in tissues of healthy rhesus macaques (RM) and those severely immunosuppressed by simian immunodeficiency virus (SIV). Contrary to earlier findings, we find that all immunocompetent animals consistently have high levels of viral RNA in oral tissues but not in other tissues examined, including the small intestine. Strikingly, abundant viral transcripts were detected in the small intestine of all of the SIV-infected RM, which has been shown to be a major site of SIV (and human immunodeficiency virus)-induced CD4+ T-cell depletion. In contrast, there was a trend to lower viral RNA levels in oropharyngeal tissues of SIV-infected animals. The expansion of FV replication to the small intestine but not to other CD4+ T-cell-depleted tissues suggests that factors other than T-cell depletion, such as dysregulation of the jejunal microenvironment after SIV infection, likely account for the expanded tissue tropism of FV replication.


2008 ◽  
Vol 82 (22) ◽  
pp. 11181-11196 ◽  
Author(s):  
Meritxell Genescà ◽  
Pamela J. Skinner ◽  
Jung Joo Hong ◽  
Jun Li ◽  
Ding Lu ◽  
...  

ABSTRACT The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8+ T-cell response in SHIV-immunized monkeys by CD8+ lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8+ T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8+ T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8+ T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8+ T cells can provide significant protection from vaginal SIV challenge.


Sign in / Sign up

Export Citation Format

Share Document