scholarly journals Magnetic Field Confinement in the Corona: The Role of Magnetic Helicity Accumulation

2006 ◽  
Vol 644 (1) ◽  
pp. 575-586 ◽  
Author(s):  
Mei Zhang ◽  
Natasha Flyer ◽  
Boon Chye Low
2010 ◽  
Vol 6 (S271) ◽  
pp. 304-316 ◽  
Author(s):  
Annick Pouquet ◽  
Marc-Etienne Brachet ◽  
Ed Lee ◽  
Pablo Mininni ◽  
Duane Rosenberg ◽  
...  

AbstractWe review some of the recent results obtained in MHD turbulence, as encountered in many astrophysical objects. We focus attention on the lack of universality in such flows, including in the simplest case (no externally imposed magnetic field, no forcing, unit magnetic Prandtl number). Several parameters can foster such a breakdown of classical Kolmogorov scaling, such as the presence of velocity-magnetic field correlations, or of magnetic helicity and the role of the interplay between nonlinear eddies and Alfvén waves. A link with avalanche processes is also discussed. These findings have led to the conjecture of the emergence of a new paradigm for MHD turbulence, as a possibly unsettled competition between several dynamical phenomena.


2005 ◽  
Vol 14 (11) ◽  
pp. 1839-1854 ◽  
Author(s):  
V. B. SEMIKOZ ◽  
D. D. SOKOLOFF

Role of cosmological magnetic field and cosmological magnetic helicity for astrophysics is considered. We discuss possible mechanisms for cosmological magnetic field production in the early universe as well as upper observational estimate for such field. The general conclusion is that a substantial cosmological field with a non-vanishing magnetic helicity can be generated in the early universe and survive up to the epoch of galaxy formation.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2020 ◽  
Vol 75 (5) ◽  
pp. 381-391 ◽  
Author(s):  
Heinz-Jürgen Schmidt

AbstractWe investigate the motion of a classical spin processing around a periodic magnetic field using Floquet theory, as well as elementary differential geometry and considering a couple of examples. Under certain conditions, the role of spin and magnetic field can be interchanged, leading to the notion of “duality of loops” on the Bloch sphere.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1720
Author(s):  
Antonios Balassis ◽  
Godfrey Gumbs ◽  
Oleksiy Roslyak

We have investigated the α–T3 model in the presence of a mass term which opens a gap in the energy dispersive spectrum, as well as under a uniform perpendicular quantizing magnetic field. The gap opening mass term plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system, and, as a consequence, we are able to compare physical properties of the the α–T3 model at low and high magnetic fields. Specifically, we explore the magnetoplasmon dispersion relation in these two extreme limits. Central to the calculation of these collective modes is the dielectric function which is determined by the polarizability of the system. This latter function is generated by transition energies between subband states, as well as the overlap of their wave functions.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


Sign in / Sign up

Export Citation Format

Share Document