scholarly journals THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS

2012 ◽  
Vol 747 (1) ◽  
pp. 82 ◽  
Author(s):  
Nicolas B. Cowan ◽  
Pavel Machalek ◽  
Bryce Croll ◽  
Louis M. Shekhtman ◽  
Adam Burrows ◽  
...  
2021 ◽  
Author(s):  
Patricio E. Cubillos ◽  
Dylan Keating ◽  
Nicolas Cowan ◽  
Johanna Vos ◽  
Ben Burningham ◽  
...  

<p>Thermal phase variations of exoplanets are a patent testimony of their multidimensional nature: day-to-night temperature contrasts range from hundreds to thousands of degrees.  Nonetheless, the spectra of these planets have typically been fit using 1D retrieval codes that only account for vertical temperature gradients.  Recent multi-dimensional retrieval schemes are generally based on linear combinations of 1D models, which are more liable to degeneracies and more computationally demanding.  Here we present an alternative: phase-dependent spectral observations are inverted to produce longitudinally resolved spectra that can then be fitted using standard 1D spectral retrieval codes. We test this scheme on the phase-resolved spectra of WASP-43b and on simulated JWST observations using the open-source Pyrat Bay retrieval framework.  We show that 1D spectral retrievals on longitudinally resolved spectra are more accurate than applying 1D spectral retrieval codes to disk-integrated emission spectra, highlighting the impact of longitudinal variations in composition in addition to temperature.  In particular, we find that JWST phase measurements of WASP-43b should be treated with longitudinally resolved spectral retrieval.</p>


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110248
Author(s):  
Miaoyu Li ◽  
Zhuohan Jiang ◽  
Yutong Liu ◽  
Shuheng Chen ◽  
Marcin Wozniak ◽  
...  

Physical health diseases caused by wrong sitting postures are becoming increasingly serious and widespread, especially for sedentary students and workers. Existing video-based approaches and sensor-based approaches can achieve high accuracy, while they have limitations like breaching privacy and relying on specific sensor devices. In this work, we propose Sitsen, a non-contact wireless-based sitting posture recognition system, just using radio frequency signals alone, which neither compromises the privacy nor requires using various specific sensors. We demonstrate that Sitsen can successfully recognize five habitual sitting postures with just one lightweight and low-cost radio frequency identification tag. The intuition is that different postures induce different phase variations. Due to the received phase readings are corrupted by the environmental noise and hardware imperfection, we employ series of signal processing schemes to obtain clean phase readings. Using the sliding window approach to extract effective features of the measured phase sequences and employing an appropriate machine learning algorithm, Sitsen can achieve robust and high performance. Extensive experiments are conducted in an office with 10 volunteers. The result shows that our system can recognize different sitting postures with an average accuracy of 97.02%.


2021 ◽  
Vol 31 (1) ◽  
pp. 64-67
Author(s):  
Keping Wang ◽  
Tongxuan Zhou ◽  
Hao Zhang ◽  
Lei Qiu

2021 ◽  
Vol 502 (2) ◽  
pp. 2266-2284
Author(s):  
Kazuo Makishima ◽  
Teruaki Enoto ◽  
Hiroki Yoneda ◽  
Hirokazu Odaka

ABSTRACT This paper describes an analysis of the NuSTAR data of the fastest-rotating magnetar 1E 1547 − 5408, acquired in 2016 April for a time lapse of 151 ks. The source was detected with a 1–60 keV flux of 1.7 × 10−11 erg s−1 cm−2, and its pulsation at a period of 2.086710(5) s. In 8–25 keV, the pulses were phase-modulated with a period of T = 36.0 ± 2.3 ks, and an amplitude of ∼0.2 s. This reconfirms the Suzaku discovery of the same effect at $T=36.0 ^{+4.5}_{-2.5}$ ks, made in the 2009 outburst. These results strengthen the view derived from the Suzaku data, that this magnetar performs free precession as a result of its axial deformation by ∼0.6 × 10−4, possibly caused by internal toroidal magneti fields (MFs) reaching ∼1016 G. Like in the Suzaku case, the modulation was not detected in energies below ∼8 keV. Above 10 keV, the pulse-phase behaviour, including the 36 ks modulation parameters, exhibited complex energy dependencies: at ∼22 keV, the modulation amplitude increased to ∼0.5 s, and the modulation phase changed by ∼65° over 10–27 keV, followed by a phase reversal. Although the pulse significance and pulsed fraction were originally very low in >10 keV, they both increased noticeably, when the arrival times of individual photons were corrected for these systematic pulse-phase variations. Possible origins of these complex phenomena are discussed, in terms of several physical processes that are specific to ultrastrong MFs.


2021 ◽  
Vol 13 (3) ◽  
pp. 409
Author(s):  
Howard Zebker

Atmospheric propagational phase variations are the dominant source of error for InSAR (interferometric synthetic aperture radar) time series analysis, generally exceeding uncertainties from poor signal to noise ratio or signal correlation. The spatial properties of these errors have been well studied, but, to date, their temporal dependence and correction have received much less attention. Here, we present an evaluation of the magnitude of tropospheric artifacts in derived time series after compensation using an algorithm that requires only the InSAR data. The level of artifact reduction equals or exceeds that from many weather model-based methods, while avoiding the need to globally access fine-scale atmosphere parameters at all times. Our method consists of identifying all points in an InSAR stack with consistently high correlation and computing, and then removing, a fit of the phase at each of these points with respect to elevation. A comparison with GPS truth yields a reduction of three, from a rms misfit of 5–6 to ~2 cm over time. This algorithm can be readily incorporated into InSAR processing flows without the need for outside information.


Sci ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 27
Author(s):  
Behnaz Majlesein ◽  
Asghar Gholami ◽  
Zabih Ghassemlooy

In underwater optical wireless communications (UOWC), scattering of the propagating light beam results in both intensity and phase variations, which limit the transmission link range and channel bandwidth, respectively. Scattering of photons while propagating through the channel is a random process, which results in the channel-dependent scattering noise. In this work, we introduce for the first time an analytical model for this noise and investigate its effect on the bit error rate performance of the UOWC system for three types of waters and a range of transmission link spans. We show that, for a short range of un-clear water or a longer range of clear water, the number of photons experiencing scattering is high, thus leading to the increased scattering noise. The results demonstrate that the FEC limit of 3×10−3 and considering the scattering noise, the maximum link spans are 51.5, 20, and 4.6 m for the clear, coastal, and harbor waters, respectively.


CrystEngComm ◽  
2021 ◽  
Author(s):  
kikuchi yusuke ◽  
Shinya Matsumoto

A tetramorphic system was discovered in a diketopyrrolopyrrole dye (3,6-bis(4-chlorophenyl)-2-propyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione), with thermosalient effects during thermal phase transitions. Two polymorphs, the red and orange forms, were obtained using liquid-liquid and liquid-gas...


Sign in / Sign up

Export Citation Format

Share Document