scholarly journals THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1

2014 ◽  
Vol 792 (2) ◽  
pp. 103 ◽  
Author(s):  
Lalitwadee Kawinwanichakij ◽  
Casey Papovich ◽  
Ryan F. Quadri ◽  
Kim-Vy H. Tran ◽  
Lee R. Spitler ◽  
...  
2012 ◽  
Vol 8 (S295) ◽  
pp. 49-52
Author(s):  
V. A. Bruce ◽  
J. S. Dunlop ◽  
M. Cirasuolo ◽  
R. J. McLure ◽  
T. A. Targett ◽  
...  

AbstractWe have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ≃ 200 of the most massive (M* > 1011 M⊙) galaxies at 1 < z < 3 in the CANDELS-UDS field. We find that, while such massive galaxies at low redshift are generally bulge-dominated, at redshifts 1<z<2 they are predominantly mixed bulge+disk systems, and by z > 2 they are mostly disk-dominated. Interestingly, we find that while most of the quiescent galaxies are bulge-dominated, a significant fraction (25–40%) of the most quiescent galaxies, have disk-dominated morphologies. Thus, our results suggest that the physical mechanisms which quench star-formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies.


2019 ◽  
Vol 490 (3) ◽  
pp. 3309-3328 ◽  
Author(s):  
E Merlin ◽  
F Fortuni ◽  
M Torelli ◽  
P Santini ◽  
M Castellano ◽  
...  

ABSTRACT We search the five CANDELS fields (COSMOS, EGS, GOODS-North, GOODS-South, and UDS) for passively evolving a.k.a. ‘red and dead’ massive galaxies in the first 2 Gyr after the big bang, integrating and updating the work on GOODS-South presented in a previous paper. We perform SED-fitting on photometric data, with top-hat star-formation histories to model an early and abrupt quenching, and using a probabilistic approach to select only robust candidates. Using libraries without (with) spectral lines emission, starting from a total of more than 20 000 z > 3 sources we end up with 102 (40) candidates, including one at z = 6.7. This implies a minimal number density of 1.73 ± 0.17 × 10−5 (6.69 ± 1.08 × 10−6) Mpc−3 for 3 < z < 5; applying a correction factor to account for incompleteness yields 2.30 ± 0.20 × 10−5. We compare these values with those from five recent hydrodynamical cosmological simulations, finding a reasonable agreement at z < 4; tensions arise at earlier epochs. Finally, we use the star-formation histories from the best-fitting models to estimate the contribution of the high-redshift passive galaxies to the global star formation rate density during their phase of activity, finding that they account for ∼5–10 per cent of the total star formation at 3 < z < 8, despite being only $\sim 0.5{{\ \rm per\ cent}}$ of the total in number. The resulting picture is that early and strong star formation activity, building massive galaxies on short time-scales and followed by a quick and abrupt quenching, is a rare but crucial phenomenon in the early Universe: the evolution of the cosmos must be heavily influenced by the short but powerful activity of these pristine monsters.


2016 ◽  
Vol 11 (S321) ◽  
pp. 327-329 ◽  
Author(s):  
Sandro Tacchella ◽  
C. Marcella Carollo ◽  
Avishai Dekel ◽  
Natascha Förster Schreiber ◽  
Alvio Renzini ◽  
...  

AbstractIn order to constrain – and understand – the growth of galaxies, we present a sample of ~ 30 galaxies at z ~ 2 with resolved distribution of stellar mass, star-formation rate, and dust attenuation on scales of ~ 1 kpc. We find that low- and intermediate-mass galaxies grow self-similarly, doubling their stellar mass in the centers and outskirts with the same pace. More massive galaxies (~ 1011 M⊙) have a reduced star-formation activity in their center: they grow mostly in the outskirts (inside-out quenching / formation). Similar trends are find in cosmological zoom-in simulations, highlighting that high stellar mass densities are formed in a gas-rich compaction phase. This nuclear ‘starburst’ phase is followed by a suppressed star-formation activity in the center, resulting in growth of the outskirts. All in all, we put forward that we witness at z ~ 2 the dissipative formation of z = 0 M* early-type galaxies.


2020 ◽  
Vol 497 (3) ◽  
pp. 3273-3296
Author(s):  
Jonathan Florez ◽  
Shardha Jogee ◽  
Sydney Sherman ◽  
Matthew L Stevans ◽  
Steven L Finkelstein ◽  
...  

ABSTRACT We investigate the relation between active galactic nucleus (AGN) and star formation (SF) activity at 0.5 &lt; z &lt; 3 by analysing 898 galaxies with X-ray luminous AGNs (LX &gt; 1044 erg s−1) and a large comparison sample of ∼320 000 galaxies without X-ray luminous AGNs. Our samples are selected from a large (11.8 deg2) area in Stripe 82 that has multiwavelength (X-ray to far-IR) data. The enormous comoving volume (∼0.3 Gpc3) at 0.5 &lt; z &lt; 3 minimizes the effects of cosmic variance and captures a large number of massive galaxies (∼30 000 galaxies with M* &gt; 1011 M⊙) and X-ray luminous AGNs. While many galaxy studies discard AGN hosts, we fit the SED of galaxies with and without X-ray luminous AGNs with Code Investigating GALaxy Emission and include AGN emission templates. We find that without this inclusion, stellar masses and star formation rates (SFRs) in AGN host galaxies can be overestimated, on average, by factors of up to ∼5 and ∼10, respectively. The average SFR of galaxies with X-ray luminous AGNs is higher by a factor of ∼3–10 compared to galaxies without X-ray luminous AGNs at fixed stellar mass and redshift, suggesting that high SFRs and high AGN X-ray luminosities may be fuelled by common mechanisms. The vast majority ($\gt 95 {{\ \rm per\ cent}}$) of galaxies with X-ray luminous AGNs at z = 0.5−3 do not show quenched SF: this suggests that if AGN feedback quenches SF, the associated quenching process takes a significant time to act and the quenched phase sets in after the highly luminous phases of AGN activity.


2019 ◽  
Vol 490 (1) ◽  
pp. 417-439 ◽  
Author(s):  
A C Carnall ◽  
R J McLure ◽  
J S Dunlop ◽  
F Cullen ◽  
D J McLeod ◽  
...  

ABSTRACT We present a Bayesian full-spectral-fitting analysis of 75 massive ($M_* \gt 10^{10.3} \, \mathrm{M_\odot }$) UVJ-selected galaxies at redshifts of 1.0 &lt; z &lt; 1.3, combining extremely deep rest-frame ultraviolet spectroscopy from VANDELS with multiwavelength photometry. By the use of a sophisticated physical plus systematic uncertainties model, constructed within the bagpipes code, we place strong constraints on the star-formation histories (SFHs) of individual objects. We first constrain the stellar mass versus stellar age relationship, finding a steep trend towards earlier average formation time with increasing stellar mass (downsizing) of $1.48^{+0.34}_{-0.39}$ Gyr per decade in mass, although this shows signs of flattening at $M_* \gt 10^{11} \, \mathrm{M_\odot }$. We show that this is consistent with other spectroscopic studies from 0 &lt; z &lt; 2. This relationship places strong constraints on the AGN-feedback models used in cosmological simulations. We demonstrate that, although the relationships predicted by simba and illustristng agree well with observations at z = 0.1, they are too shallow at z = 1, predicting an evolution of ≲0.5 Gyr per decade in mass. Secondly, we consider the connections between green-valley, post-starburst, and quiescent galaxies, using our inferred SFH shapes and the distributions of galaxy physical properties on the UVJ diagram. The majority of our lowest-mass galaxies ($M_* \sim 10^{10.5} \, \mathrm{M_\odot }$) are consistent with formation in recent (z &lt; 2), intense starburst events, with time-scales of ≲500 Myr. A second class of objects experience extended star-formation epochs before rapidly quenching, passing through both green-valley and post-starburst phases. The most massive galaxies in our sample are extreme systems: already old by z = 1, they formed at z ∼ 5 and quenched by z = 3. However, we find evidence for their continued evolution through both AGN and rejuvenated star-formation activity.


1996 ◽  
Vol 171 ◽  
pp. 443-443
Author(s):  
R.E. Schulte-Ladbeck ◽  
Ulrich Hopp

We recently completed two-color CCD photometry of resolved stars in 11 dwarf irregular galaxies (Hopp & Schulte-Ladbeck, 1995, A&AS 111, 527), selected because of their relative isolation from massive galaxies in the Kran-Korteweg – Tammann sample (1979, AN 300, 181). The B-R color magnitude diagrams (CMD) show that all galaxies studied had star formation activity in the last ∼ 108 yr. Several of them continue to form stars, the most active being UGC 5272 A (see Hopp & Schulte-Ladbeck, 1991, A&A 248, 1) while others, like DDO 210 (Hopp & Schulte-Ladbeck, 1994, ESO Conf. Workshop Proc. 49, 511), are pausing in their star formation activity. The CMDs enable us to select the brightest blue supergiants in these galaxies and to estimate their distances, D. Our values agree with the estimates based on the Virgo inflow model of Kran-Korteweg (1986, A&AS 66, 255) at the 30%-level. Prelimanary values are given in the table below.


2015 ◽  
Vol 11 (S319) ◽  
pp. 111-111
Author(s):  
Liz Arcila-Osejo ◽  
Marcin Sawicki ◽  
Anneya Golob ◽  
Stephane Arnouts ◽  
Thibaud Moutard

AbstractAt redshift z~1.7 the Universe was at the peak of its star-formation activity. It is thus a puzzle why some galaxies, many of them very massive (M* ⩾ 1011 M⊙), had already chosen to stop forming stars. These ultra-massive galaxies, guaranteed to be the central galaxies of their host dark matter halos, must have attained very high rates of star formation to assemble their stellar masses in such a short amount of time. Using the largest (to date) K-selected gzKs survey of passive galaxies (in an effective area of ~ 27.5 deg2) we study the demographics of these dead monsters, hoping to help understand the quenching mechanism that shut them down.


2019 ◽  
Vol 487 (4) ◽  
pp. 5416-5440 ◽  
Author(s):  
Sandro Tacchella ◽  
Benedikt Diemer ◽  
Lars Hernquist ◽  
Shy Genel ◽  
Federico Marinacci ◽  
...  

ABSTRACT Using the IllustrisTNG simulations, we investigate the connection between galaxy morphology and star formation in central galaxies with stellar masses in the range 109–1011.5 M⊙. We quantify galaxy morphology by a kinematical decomposition of the stellar component into a spheroidal and a disc component (spheroid-to-total ratio, S/T) and by the concentration of the stellar mass density profile (C82). S/T is correlated with stellar mass and star formation activity, while C82 correlates only with stellar mass. Overall, we find good agreement with observational estimates for both S/T and C82. Low- and high-mass galaxies are dominated by random stellar motion, while only intermediate-mass galaxies (M⋆ ≈ 1010–1010.5 M⊙) are dominated by ordered rotation. Whereas higher mass galaxies are typical spheroids with high concentrations, lower mass galaxies have low concentration, pointing to different formation channels. Although we find a correlation between S/T and star formation activity, in the TNG model galaxies do not necessarily change their morphology when they transition through the green valley or when they cease their star formation, this depending on galaxy stellar mass and morphological estimator. Instead, the morphology (S/T and C82) is generally set during the star-forming phase of galaxies. The apparent correlation between S/T and star formation arises because earlier forming galaxies had, on average, a higher S/T at a given stellar mass. Furthermore, we show that mergers drive in situ bulge formation in intermediate-mass galaxies and are responsible for the recent spheroidal mass assembly in the massive galaxies with M⋆ &gt; 1011 M⊙. In particular, these massive galaxies assemble about half of the spheroidal mass while star-forming and the other half through mergers while quiescent.


2011 ◽  
Vol 7 (S284) ◽  
pp. 460-464
Author(s):  
S. Kaviraj ◽  
R. M. Crockett ◽  
J. Silk ◽  
R. S Ellis ◽  
S. K. Yi ◽  
...  

AbstractWe summarise recent progress in understanding the star formation activity in early-type galaxies (ETGs), using recent studies that leverage photometry in the rest-frame ultraviolet (UV) wavelengths. While classically thought to be old, passively-evolving systems, recent UV studies have revealed widespread star formation in ETGs, with ~20% of the stellar mass in today's ETGs forming at late epochs (z < 1). A strong correlation is found between the presence of morphological disturbances and blue UV colours, suggesting that the star formation is merger-driven. However, the major merger rate at late epochs is far too low to satisfy the number of disturbed ETGs, indicating that minor mergers drive the star formation in these galaxies over the latter half of cosmic time. Together with the recent literature which suggests that minor mergers may drive the size evolution of massive ETGs, these results highlight the significant role of minor mergers in driving the evolution of massive galaxies in the low and intermediate-redshift Universe.


2020 ◽  
Vol 15 (S359) ◽  
pp. 33-34
Author(s):  
K. A. Cutiva-Alvarez ◽  
R. Coziol ◽  
J. P. Torres-Papaqui ◽  
H. Andernach ◽  
A. C. Robleto-Orús

AbstractUsing WISE data, we calibrated the W2-W3 colors in terms of star formation rates (SFRs) and applied this calibration to a sample of 1285 QSOs with the highest flux quality, covering a range in redshift from z ˜ 0.3 to z ˜ 3.8. According to our calibration, the SFR increases continuously, reaching a value at z ˜ 3.8 about 3 times higher on average than at lower redshift. This increase in SFR is accompanied by an increase of the BH mass by a factor 100 and a gradual increase of the mean Eddington ratio from 0.1 to 0.3 up to z ˜ 1.5 – 2.0, above which the ratio stays constant, despite a significant increase in BH mass. Therefore, QSOs at high redshifts have both more active BHs and higher levels of star formation activity.


Sign in / Sign up

Export Citation Format

Share Document