Experimental investigations of emission spectrum of a discharge with two liquid non-metallic (tap-water) electrodes in air at atmospheric pressure

2011 ◽  
Vol 44 (37) ◽  
pp. 375202 ◽  
Author(s):  
P Andre ◽  
Yu A Barinov ◽  
G Faure ◽  
S M Shkol'nik
Author(s):  
S. V. Banushkina ◽  
◽  
A. I. Turkin ◽  
A. I. Chepurov ◽  
◽  
...  

Clinopyroxenes (Cpx) are one of the main rock-forming minerals, but stoichiometry of their compositions was called into question. In particular, an idea of hypothetical calcium molecule Eskola (CaEs, Ca0,5AlSi2O6) existence was expressed. This minal has structure vacancy and silica excess. Numerous experimental investigations in CMAS-system (CaO-MgO-Al2O3-SiO2) have showed that the question of non-stoichiometric Cpx existence remains open. This paper presents the results of an experimental study of the diopside Di (CaMgSi2O6) – calcium molecule Eskola CaEs (Ca0,5AlSi2O6) cross-section in the CMAS-system. The experiments were carried out in the following pressure and temperature range: P=10-4 – 3,0 GPa; T=966 – 15250C. Experiments at atmospheric pressure (10-4 GPa) were performed on a vertical shaft electric resistance furnace; high-pressure ones were performed on a "piston-cylinder" type apparatus. Samples obtained were analyzed using electron microprobe (EMP), scanning electron microscope (SEM) and Raman spectrometer. Depending on the P-T conditions, the samples contain the following phases: anorthite An, garnet Grt, diopside Di, clinopyroxene Cpx, quartz Qtz (tridymite Tr – for experiments at atmospheric pressure), and glass L. The data array on the composition of clinopyroxenes crystallized in this cross-section with diopside in various associations is generalized and supplemented. Clinopyroxenes were found to form quaternary solid solutions of diopside Di (CaMgSi2O6) – enstatite En (Mg2Si2O6) – calcium molecule Tschermak CaTs (CaAl2SiO6) – calcium molecule Eskola CaEs (Ca0,5AlSi2O6). The CaTs and CaEs minals contents are positively correlated with the amount of aluminum in clinopyroxene, and this relationship is particularly pronounced for CaTs. It is confirmed that clinopyroxenes in this cross-section can contain an excess of silica at both atmospheric and high pressures. Apparently, the cation vacancy that exists in pyroxene structure can participate in ordering processes. As a result the pyroxenes of another structure (not diopside – C2/c-symmetry) can be crystallized from total compositions in the Di-CaEs cross-section. Additional research is needed to support this hypothesis. Besides, at present investigation it was not possible to establish an unambiguous relationship between the Cpx composition and P-T-parameters, since it is also associated with both the mixture initial composition and the mineral association. Further experiments are required to justify any geothermobarometric dependence.


2002 ◽  
Vol 35 (15) ◽  
pp. 1846-1854 ◽  
Author(s):  
P Andre ◽  
J Aubreton ◽  
Yu Barinov ◽  
M F Elchinger ◽  
P Fauchais ◽  
...  

2001 ◽  
Vol 34 (24) ◽  
pp. 3456-3465 ◽  
Author(s):  
P Andre ◽  
Yu Barinov ◽  
G Faure ◽  
V Kaplan ◽  
A Lefort ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Bartosz Hrycak ◽  
Dariusz Czylkowski ◽  
Robert Miotk ◽  
Miroslaw Dors ◽  
Mariusz Jasinski ◽  
...  

AbstractHydrogen seems to be one of the most promising alternative energy sources. It is a renewable fuel as it could be produced from e.g. waste or bio-ethanol. Furthermore hydrogen is compatible with fuel cells and is environmentally clean. In contrast to conventional methods of hydrogen production such as water electrolysis or coal gasification we propose a method based on atmospheric pressure microwave plasma. In this paper we present results of the experimental investigations of hydrogen production from ethanol in the atmospheric pressure plasma generated in waveguide-supplied cylindrical type nozzleless microwave (2.45 GHz) plasma source (MPS). Nitrogen was used as a working gas. All experimental tests were performed with the nitrogen flow rate Q ranged from 1500 to 3900 NL h


Author(s):  
Arman Ahamed Subash ◽  
Haisol Kim ◽  
Sven-Inge Möller ◽  
Mattias Richter ◽  
Christian Brackmann ◽  
...  

Abstract Experimental investigations were performed using a standard 3rd generation dry low emission (DLE) burner under atmospheric pressure to study the effect of central and pilot fuel addition, load variations and H2 enrichment in a NG flame. High-speed OH-PLIF and OH-chemiluminescence imaging were employed to investigate the flame stabilization, flame turbulence interactions, and flame dynamics. Along with the optical measurements, combustion emissions were recorded to observe the effect of changing operating conditions on NOX level. The burner is used in Siemens industrial gas turbines SGT-600, SGT-700 and SGT-800 with minor hardware differences. This study thus is a step to characterize fuel and load flexibility for these turbines. Without pilot and central fuel injections in the current burner configuration, the main flame is stabilized creating a central recirculation zone. Addition of the pilot fuel strengthens the outer recirculation zone (ORZ) and moves the flame slightly downstream, whereas the flame moves upstream without affecting the ORZ when central fuel injection is added. The flame was investigated utilizing H2/NG fuel mixtures where the H2 amount was changed from 0 to 100%. The flame becomes more compact, the anchoring position moves closer to the burner exit and the OH signal distribution becomes more distinct for H2 addition due to increased reaction rate, diffusivity, and laminar burning velocity. Changing the load from part to base, similar trends were observed in the flame behavior but in this case due to the higher heat release because of increased turbulence intensity.


1976 ◽  
Vol 6 (5) ◽  
pp. 619-621
Author(s):  
N G Basov ◽  
V A Danilychev ◽  
Andrei A Ionin ◽  
O M Kerimov ◽  
Ivan B Kovsh ◽  
...  

Author(s):  
A. Odaymet ◽  
H. Louahlia-Gualous

Experimental investigations of a two-phase flow were conducted to study heat transfer and various flow patterns of steam condensation in two different microchannels. Microchannels have a rectangular cross-section with hydraulic diameter of 305μm (depth of 310μm and width of 300μm) and 410.5μm (depth of 312μm and width of 600μm). The length of each microchannel is of 50 mm. The silicon microchannel is covered with a transparent thin Pyrex plate to view different flow patterns. Microthermocouples (K-type, 20μm) were placed in rectangular silicon grooves. Measurements are carried out for different inlet pressures and flow rates of steam while the outlet pressure of the microchannel is kept at atmospheric pressure. Plug/slug flow patterns are observed in the microchannel for different mass fluxes. Local surface temperatures along the microchannel corresponding of each two-phase flow structure are measured and analyzed.


An experimental investigation is described of the microstructure of a flat, premixed, fuel-rich hydrogen+oxygen+nitrogen flame at atmospheric pressure. The study involved measurement of the temperature profile and the concentration profiles for the stable species in the flame. By measuring the profile of emitted light intensity when traces of certain inorganic salts were added to the gases entering the flame, it was further possible to derive information about relative hydrogen atom concentrations in the burnt-gas region.


Sign in / Sign up

Export Citation Format

Share Document