The Nature of Active Nitrogen

1957 ◽  
Vol 70 (12) ◽  
pp. 887-899 ◽  
Author(s):  
J M Anderson
Keyword(s):  
1983 ◽  
Vol 37 (6) ◽  
pp. 545-552 ◽  
Author(s):  
John Kishman ◽  
Eric Barish ◽  
Ralph Allen

A predominantly blue “active nitrogen” afterglow was generated in pure flowing nitrogen or in air by using a dielectric discharge at pressures from 1 to 20 Torr. The afterglow contains triplet state molecules and vibrationally excited ground state molecules. These species are produced directly by electron impact without the formation and recombination of nitrogen atoms. The most intense emission is the N2 second positive band system. The N2 first positive and N2+ first negative systems are also observed. The spectral and electrical properties of this discharge are discussed in order to establish guidelines for the analytical use of the afterglow for chemiluminescence reactions. The metastatic nitrogen efficiently transfers its energy to atomic and molecular species which are introduced into the gas phase and these excited species emit characteristic radiation. The effects of electrothermal atomization of Zn and the introduction of gaseous species (e.g., NO) on the afterglow are described.


2011 ◽  
Vol 415-417 ◽  
pp. 71-75
Author(s):  
Chun Xiang Cui ◽  
Yan Chun Li ◽  
Tie Bao Wang ◽  
Shuang Jin Liu ◽  
Suek Bong Kang

In situ NbC and VC nanoparticles reinforced Fe-Si-Mn-Nb-V matrix composite was carried out using a plasma jet with a plasma gas flow of (Ar + CH4) for very short time. The process involve improving the efficiency of the reaction in terms of consumption of the available active nitrogen atoms as well as the production of very fine and homogeneous distribution of all reinforcing phases of ceramic particles, preferable in the nanometer range. The nanoreinforcements synthesized by in situ reaction in this hybrid composite are NbC and VC ceramic particles.


1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.


2002 ◽  
Vol 750 ◽  
Author(s):  
Yoshifumi Aoi ◽  
Kojiro Ono ◽  
Kunio Sakurada ◽  
Eiji Kamijo

ABSTRACTAmorphous CNx thin films were deposited by pulsed laser deposition (PLD) combined with a nitrogen rf radical beam source which supplies active nitrogen species to the growing film surface. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), Raman scattering, and Fourier transform infrared (FTIR) spectroscopy. Nitrogen content of the deposited films increased with increasing rf input power and N2 pressure in the PLD chamber. The maximum N/C ratio 0.23 was obtained at 400 W of rf input power and 1.3 Pa. XPS N 1s spectra shows the existence of several bonding structures in the deposited films. Electrical properties of the deposited films were investigated. The electrical conductivity decreased with increasing N/C atomic ratio. Temperature dependence of electrical conductivity measurements indicated that electronic conduction occurred by variable-range hopping between p electron localized states.


1952 ◽  
Vol 30 (12) ◽  
pp. 915-921 ◽  
Author(s):  
G. S. Trick ◽  
C. A. Winkler

The reaction of nitrogen atoms with propylene has been found to produce hydrogen cyanide and ethylene as the main products, together with smaller amounts of ethane and propane and traces of acetylene and of a C4 fraction. With excess propylene, the nitrogen atoms were completely consumed and for the reaction at 242 °C., 0.77 mole of ethylene was produced for each mole of excess propylene added. For reactions at lower temperatures, less ethylene was produced. The proposed mechanism involves formation of a complex between the nitrogen atom and the double bond of propylene, followed by decomposition to ethylene, hydrogen cyanide, and atomic hydrogen. The ethylene would then react with atomic nitrogen in a similar manner.


In the course of an investigation on the spectra of the halogens and other substances excited by active nitrogen, Strutt and Fowler (1912) observed that, when bromine was admitted into the glowing nitrogen, a feeble orange luminosity was developed. Visual observation with a spectroscope revealed eight narrow bands in the orange region of the spectrum, at intervals of about 28 A. In addition to these bands, a broad symmetrical band with ill-defined edges at 2930 and 2890 A was photographed. This work does not appear to have been followed up.' As the apparatus used for a recent similar investigation with chlorine was available (Cameron and Elliott 1938), it seemed worth while attempting to photograph the orange bands with the rapid panchromatic material now available. This attempt has proved successful, and the results will now be described.


Sign in / Sign up

Export Citation Format

Share Document