A flow field investigation in the diffuser of a high-speed centrifugal compressor using digital particle imaging velocimetry

2000 ◽  
Vol 11 (7) ◽  
pp. 1007-1022 ◽  
Author(s):  
Mark P Wernet
2000 ◽  
Vol 123 (2) ◽  
pp. 418-428 ◽  
Author(s):  
Mark P. Wernet ◽  
Michelle M. Bright ◽  
Gary J. Skoch

Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in high-speed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (17) ◽  
pp. 2969-2981 ◽  
Author(s):  
Y. Huang ◽  
Y. L. Wang ◽  
T. N. Wong

We investigate the AC electric field controlled filament thinning and droplet formation dynamics of one non-Newtonian fluid. Furthermore, for the first time, we quantitatively measure the flow field of the non-Newtonian droplet formation under the influence of AC electric field, via a high-speed micro particle imaging velocimetry (μPIV) system. We discover the viscoelasticity contributes to the discrepancies majorly.


2013 ◽  
Vol 23 (2) ◽  
pp. 119-140 ◽  
Author(s):  
Ming Zhang ◽  
Min Xu ◽  
Yuyin Zhang ◽  
Gaoming Zhang ◽  
David J. Cleary

Author(s):  
Xinqian Zheng ◽  
Anxiong Liu ◽  
Zhenzhong Sun

The stable-flow range of a compressor is predominantly limited by surge and stall. In this paper, an unsteady simulation method was employed to investigate the instability mechanisms of a high-speed turbocharger centrifugal compressor with a vaneless diffuser. In comparison with the variation in the pressure obtained by dynamic experiments on the same compressor, unsteady simulations show a great accuracy in representing the stall behaviour. The predicted frequency of the rotating stall is 22.5% of the rotor frequency, which agrees with to the value for the high-frequency short-term rotating stall obtained experimentally. By investigating the instability of the flow field, it is found that the unstable flow of the turbocharger compressor at high rotational speeds is caused by the tip clearance leakage flow and the ‘backflow vortices’ originating from the interaction of the incoming flow and the backflow in the tip region of the passages. The asymmetric volute helps to induce the occurrence of stall in certain impeller passages because it generates an asymmetric flow field. The high-pressure low-velocity area from the 180° circumferential position to the 270° circumferential position is dominant and strengthens the backflow at the trailing edge of the impeller, finally triggering the stall.


Author(s):  
Beni Cukurel ◽  
Patrick B. Lawless ◽  
Sanford Fleeter

An efficient diffuser is essential to a modern compressor stage, due to its significance in stage performance, durability and operability. To address the need for data that describe the complex, unsteady flow field in a vaned diffuser, Particle Image Velocity is utilized to characterize the spanwise and circumferential variations of the flow features in the vaned diffuser passage of a transonic centrifugal compressor. The spanwise variation in the diffuser flow field is further investigated by comparison of 3 different operating conditions representative of low, nominal and high loading. These data demonstrate that not only the diffuser flow field is highly dependent on the operation conditions, e.g. hub-to-shroud variation increases with loading, but also the circumferential periodicity, created by the highly three dimensional impeller discharge flow, generates a larger unsteadiness towards the hub region of the vaned diffuser.


Sign in / Sign up

Export Citation Format

Share Document