Experimental Study on Internal Flow Field of a High-Speed Centrifugal Compressor at Different Altitudes

2021 ◽  
Author(s):  
Xinghang Yu ◽  
Hongwei Ma ◽  
Lei Shi ◽  
Lianpeng Zhao
1996 ◽  
Vol 61 (6) ◽  
pp. 856-867 ◽  
Author(s):  
Oldřich Brůha ◽  
Ivan Fořt ◽  
Pavel Smolka ◽  
Milan Jahoda

The frequency of turbulent macroinstability occurrence was measured in liquids agitated in a cylindrical baffled vessel. As it has been proved by preceding experimental results of the authors, the stochastic quantity with frequency of occurrence of 10-1 to 100 s-1 is concerned. By suitable choosing the viscosity of liquids and frequency of impeller revolutins, the region of Reynolds mixing numbers was covered from the pure laminar up to fully developed turbulent regime. In addition to the equipment making it possible to record automatically the macroinstability occurrence, also the visualization method and videorecording were employed. It enabled us to describe in more detail the form of entire flow field in the agitated system and its behaviour in connection with the macroinstability occurrence. It follows from the experiments made that under turbulent regime of flow of agitated liquids the frequency of turbulent macroinstability occurrence is the same as the frequency of the primary circulation of agitated liquid.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Wen-wu Song ◽  
Li-chao Wei ◽  
Jie Fu ◽  
Jian-wei Shi ◽  
Xiu-xin Yang ◽  
...  

The backflow vortexes at the suction connection in high-speed centrifugal pumps have negative effect on the flow field. Setting an orifice plate in front of the inducer is able to decrease the negative effect caused by backflow vortexes. The traditional plate is able to partially control the backflow vortexes, but a small part of the vortex is still in the inlet and the inducer. Four new types of orifice plates were created, and the control effects on backflow vortexes were analyzed. The ANSYS-CFX software was used to numerically simulate a high-speed centrifugal pump. The variations of streamline and velocity vectors at the suction connection were analyzed. Meanwhile, the effects of these plates on the impeller pressure and the internal flow field of the inducer were analyzed. Numerically, simulation and experimental data analysis methods were used to compare the head and efficiency of the high-speed pumps. The results show that the C-type orifice plate can improve the backflow vortex, reduce the low-pressure area, and improve the hydraulic performance of the high-speed pump.


2000 ◽  
Vol 123 (2) ◽  
pp. 418-428 ◽  
Author(s):  
Mark P. Wernet ◽  
Michelle M. Bright ◽  
Gary J. Skoch

Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in high-speed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.


2011 ◽  
Vol 393-395 ◽  
pp. 992-995
Author(s):  
Zhong Yun ◽  
Chuang Xiang ◽  
Xiao Yan Tang ◽  
Fen Shi

The strongly swirling turbulent flow in the internal flow field of a high-speed spiral blood pump(HSBP), is one of important factors leading to the fragmentation of the red blood cell(RBC) and the hemolysis. The study on the turbulent injure principle of blood in the HSBP is carried out by using the theory of waterpower rotated flow field and the hemorheology. The numerical equation of the strongly swirling turbulent flow field is proposed. The largest stable diameter of red blood cells in the turbulent flow field is analyzed. The determinant gist on the red blood cell turbulent fragmentation is obtained. The results indicate that in the HSMP, when turbulent flow is more powerful, shear stress is weaker, the vortex mass with energy in flow field may cause serious turbulent fragmentation because of the diameter which is smaller than the RBC’s. The RBC’s turbulent breakage will occur when the Weber value is larger than 12.


1976 ◽  
Vol 98 (3) ◽  
pp. 390-399 ◽  
Author(s):  
D. Eckardt

Detailed accurate measurements of velocities, directions, and fluctuation intensities were performed with a newly developed laser velocimeter in the internal flow field of a radial discharge impeller, running at tip speeds up to 400 m/s. Relative flow distributions are presented in five measurement areas from inducer inlet to impeller discharge. The impeller flow pattern, which coincides largely with potential-theory calculations in the axial inducer, becomes more and more reversed when the flow separates from the blade suction side, developing a rapidly increasing wake in the radial impeller. The observed secondary flow pattern and effects of channel curvature and system rotation on turbulence structure are discussed with respect to separation onset and jet/wake interaction.


Author(s):  
Ce Yang ◽  
Wenli Wang ◽  
Hanzhi Zhang ◽  
Yanzhao Li ◽  
Ding Tong ◽  
...  

Abstract In a centrifugal compressor with a volute, the internal flow field is circumferentially nonuniform owing to the asymmetric structure of the volute. Currently, the mechanisms by which the volute influences the stall inception circumferential position and the stall process in a transonic centrifugal compressor are not clear. In this study, the stall process in the centrifugal compressor with a volute is investigated under transonic inlet conditions. Obtained by experimental and simulation results, the static pressure distributions around the casing wall are compared with each other. Thereafter, an unsteady simulation is conducted on the stall process under transonic inlet conditions. By analyzing the stall cell evolution pattern at the impeller inlet, the stall process can be divided into three stages: stall onset, stall development, and stall maturation. The spike-type stall inceptions occur twice at the tip in the circumferential 135° position of the impeller inlet. This circumferential position is also the affected position of the high static pressure region induced by the volute tongue. Because of the circumferentially nonuniform flow field, there is a stall cell decay zone and a stall cell formation/growth zone at the impeller inlet. For the compressor under study, the approximate circumferential range of 135° to 270° is the decay zone, and the circumferential range of 270° to 360° is the formation/growth zone. The stall inception cannot occur in the decay zone. However, the stall cells can pass through the decay zone when the stall cell size is large enough. The first stall inception cannot propagate circumferentially, while the second one can. The propagation speed of stall cells in the circumferential direction is at approximately 70% of the rotational speed of impeller.


2018 ◽  
Vol 186 ◽  
pp. 01001
Author(s):  
Xu Fan ◽  
Bo Ran

In the rotor with high speed, there is a certain axial circulation in the internal gas, which is necessary to analyze the cause of formation and influence factors for understanding better the internal flow field. There are many factors affecting the axial circulation. Different circulation drives have different effects on the flow field. In this paper, numerical computation with N-S equations is used to compute the flow field parameters and analyze the mechanism of the flow field. The influence of the temperature of the end cap on the flow field is mainly disscussed. By comparing and analyzing the streamline shape and the size of vortex region under different temperature drive, an effective method is provided for the study of axial circulation in the highspeed rotating flow field.


Sign in / Sign up

Export Citation Format

Share Document