scholarly journals Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy

2016 ◽  
Vol 27 (41) ◽  
pp. 415707 ◽  
Author(s):  
Kuniko Kimura ◽  
Kei Kobayashi ◽  
Atsushi Yao ◽  
Hirofumi Yamada
2018 ◽  
Vol 9 ◽  
pp. 945-952 ◽  
Author(s):  
Christopher C Glover ◽  
Jason P Killgore ◽  
Ryan C Tung

This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded contact-resonance frequency is observed with increasing scan speed. Proper characterization and understanding of this phenomenon is necessary to conduct accurate quantitative imaging using contact-resonance AFM, and other contact-mode AFM techniques, at higher scan speeds. A squeeze film hydrodynamic theory is proposed to explain this phenomenon, and model predictions are compared against the experimental data.


2007 ◽  
Vol 84 (3) ◽  
pp. 490-494 ◽  
Author(s):  
D. Passeri ◽  
A. Bettucci ◽  
M. Germano ◽  
M. Rossi ◽  
A. Alippi ◽  
...  

2007 ◽  
Vol 40 (22) ◽  
pp. 7136-7145 ◽  
Author(s):  
Daniel Rupp ◽  
Ute Rabe ◽  
Sigrun Hirsekorn ◽  
Walter Arnold

2004 ◽  
Vol 838 ◽  
Author(s):  
D. C. Hurley ◽  
A. B. Kos ◽  
P. Rice

ABSTRACTWe describe a dynamic atomic force microscopy (AFM) method to map the nanoscale elastic properties of surfaces, thin films, and nanostructures. Our approach is based on atomic force acoustic microscopy (AFAM) techniques previously used for quantitative measurements of elastic properties at a fixed sample position. AFAM measurements determine the resonant frequencies of an AFM cantilever in contact mode to calculate the tip-sample contact stiffness k*. Local values for elastic properties such as the indentation modulus M can be determined from k* with the appropriate contact-mechanics models. To enable imaging at practical rates, we have developed a frequency-tracking circuit based on digital signal processor architecture to rapidly locate the contact-resonance frequencies at each image position. We present contact-resonance frequency images obtained using both flexural and torsional cantilever images as well as the corresponding vertical contact-stiffness (k*) image calculated from flexural frequency images. Methods to obtain elastic-modulus images of M from vertical contact-stiffness images are also discussed.


Author(s):  
D. Passeri ◽  
A. Bettucci ◽  
M. Germano ◽  
A. Biagioni ◽  
M. Rossi ◽  
...  

2016 ◽  
Vol 61 (1) ◽  
pp. 9-12
Author(s):  
B. Zhang ◽  
H. Wagner ◽  
M. Büchsenschütz-Göbeler ◽  
Y. Luo ◽  
S. Küchemann ◽  
...  

Abstract For the past two decades, atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has played a promising role in materials characterization with a good lateral resolution at micro/nano dimensions. AFAM is based on inducing out-of-plane vibrations in the specimen, which are generated by an ultrasonic transducer. The vibrations are sensed by the AFM cantilever when its tip is in contact with the material under test. From the cantilver’s contactresonance spectra, one determines the real and the imaginary part of the contact stiffness k*, and then from these two quantities the local indentation modulus M' and the local damping factor Qloc-1 can be obtained with a spatial resolution of less than 10 nm. Here, we present measured data of M' and of Qloc-1 for the insulating amorphous material, a-SiO2. The amorphous SiO2 layer was prepared on a crystalline Si wafer by means of thermal oxidation. There is a spatial distribution of the indentation modulus M' and of the internal friction Qloc-1. This is a consequence of the potential energy landscape for amorphous materials.


Sign in / Sign up

Export Citation Format

Share Document