scholarly journals Measurement of the Indentation Modulus and the Local Internal Friction in Amorphous SiO2 Using Atomic Force Acoustic Microscopy

2016 ◽  
Vol 61 (1) ◽  
pp. 9-12
Author(s):  
B. Zhang ◽  
H. Wagner ◽  
M. Büchsenschütz-Göbeler ◽  
Y. Luo ◽  
S. Küchemann ◽  
...  

Abstract For the past two decades, atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has played a promising role in materials characterization with a good lateral resolution at micro/nano dimensions. AFAM is based on inducing out-of-plane vibrations in the specimen, which are generated by an ultrasonic transducer. The vibrations are sensed by the AFM cantilever when its tip is in contact with the material under test. From the cantilver’s contactresonance spectra, one determines the real and the imaginary part of the contact stiffness k*, and then from these two quantities the local indentation modulus M' and the local damping factor Qloc-1 can be obtained with a spatial resolution of less than 10 nm. Here, we present measured data of M' and of Qloc-1 for the insulating amorphous material, a-SiO2. The amorphous SiO2 layer was prepared on a crystalline Si wafer by means of thermal oxidation. There is a spatial distribution of the indentation modulus M' and of the internal friction Qloc-1. This is a consequence of the potential energy landscape for amorphous materials.

2004 ◽  
Vol 838 ◽  
Author(s):  
D. C. Hurley ◽  
A. B. Kos ◽  
P. Rice

ABSTRACTWe describe a dynamic atomic force microscopy (AFM) method to map the nanoscale elastic properties of surfaces, thin films, and nanostructures. Our approach is based on atomic force acoustic microscopy (AFAM) techniques previously used for quantitative measurements of elastic properties at a fixed sample position. AFAM measurements determine the resonant frequencies of an AFM cantilever in contact mode to calculate the tip-sample contact stiffness k*. Local values for elastic properties such as the indentation modulus M can be determined from k* with the appropriate contact-mechanics models. To enable imaging at practical rates, we have developed a frequency-tracking circuit based on digital signal processor architecture to rapidly locate the contact-resonance frequencies at each image position. We present contact-resonance frequency images obtained using both flexural and torsional cantilever images as well as the corresponding vertical contact-stiffness (k*) image calculated from flexural frequency images. Methods to obtain elastic-modulus images of M from vertical contact-stiffness images are also discussed.


Ultrasonics ◽  
2000 ◽  
Vol 38 (1-8) ◽  
pp. 430-437 ◽  
Author(s):  
U. Rabe ◽  
S. Amelio ◽  
E. Kester ◽  
V. Scherer ◽  
S. Hirsekorn ◽  
...  

2009 ◽  
Vol 1185 ◽  
Author(s):  
Malgorzata Kopycinska-Müller ◽  
Andre Striegler ◽  
Arnd Hürrich ◽  
Bernd Köhler ◽  
Norbert Meyendorf ◽  
...  

AbstractAtomic force acoustic microscopy (AFAM) is a non-destructive method able to determine the indentation modulus of a sample with high lateral and depth resolution. We used the AFAM technique to measure the indentation modulus of film-substrate systems Msam and then to extract the value of the indentation modulus of the film Mf. The investigated samples were films of silicon oxide thermally grown on silicon single crystal substrates by use of dry and wet oxidation methods. The thickness of the samples ranged from 7 nm to 28 nm as measured by ellipsometry. Our results clearly show that the values of Msam obtained for the film-substrate systems depended on the applied static load and the film thickness. The observed dependency was used to evaluate the indentation modulus of the film. The values obtained for Mf ranged from 77 GPa to 95 GPa and were in good agreement with values reported in the literature.


2020 ◽  
Vol 11 ◽  
pp. 703-716
Author(s):  
Edgar Cruz Valeriano ◽  
José Juan Gervacio Arciniega ◽  
Christian Iván Enriquez Flores ◽  
Susana Meraz Dávila ◽  
Joel Moreno Palmerin ◽  
...  

In this work, a high-resolution atomic force acoustic microscopy imaging technique is developed in order to obtain the local indentation modulus at the nanoscale level. The technique uses a model that gives a qualitative relationship between a set of contact resonance frequencies and the indentation modulus. It is based on white-noise excitation of the tip–sample interaction and uses system theory for the extraction of the resonance modes. During conventional scanning, for each pixel, the tip–sample interaction is excited with a white-noise signal. Then, a fast Fourier transform is applied to the deflection signal that comes from the photodiodes of the atomic force microscopy (AFM) equipment. This approach allows for the measurement of several vibrational modes in a single step with high frequency resolution, with less computational cost and at a faster speed than other similar techniques. This technique is referred to as stochastic atomic force acoustic microscopy (S-AFAM), and the frequency shifts of the free resonance frequencies of an AFM cantilever are used to determine the mechanical properties of a material. S-AFAM is implemented and compared with a conventional technique (resonance tracking-atomic force acoustic microscopy, RT-AFAM). A sample of a graphite film on a glass substrate is analyzed. S-AFAM can be implemented in any AFM system due to its reduced instrumentation requirements compared to conventional techniques.


Ultrasonics ◽  
2016 ◽  
Vol 71 ◽  
pp. 271-277 ◽  
Author(s):  
F.J. Flores-Ruiz ◽  
F.J. Espinoza-Beltrán ◽  
C.J. Diliegros-Godines ◽  
J.M. Siqueiros ◽  
A. Herrera-Gómez

1999 ◽  
Vol 591 ◽  
Author(s):  
W. Arnold ◽  
S. Amelio ◽  
S. Hirsekorn ◽  
U. Rabe

ABSTRACTAtomic Force Acoustic Microscopy is a near-field technique which combines the ability in using ultrasonics to image elastic properties with the high lateral resolution of scanning probe microscopes. We present a technique to measure the contact stiffness and the Young's modulus of sample surfaces quantitatively with a resolution of approximately 20 rum exploiting the contact resonance frequencies of standard cantilevers used in Atomic Force Microscopy. The Young's modulus of nanocrystalline ferrite films have been measured as a function of oxidation temperature. Furthermore images showing the domain structure of piezoelectric lead zirconate titanate ceramics have been taken.


2013 ◽  
Vol 800 ◽  
pp. 325-329
Author(s):  
Gai Mei Zhang ◽  
Li Ping Yang ◽  
Chen Qiang ◽  
Yuan Wei ◽  
Jian Dong Lu ◽  
...  

Atomic force acoustic microscopy (AFAM) is a technique combining the atomic force microscope (AFM) and ultrasonic technique, where the cantilever or the sample surface is vibrated at ultrasonic frequencies while a sample surface is scanned with the sensor tip contacting the sample. At a consequence, the amplitude of the cantilever vibration as well as the shift of the cantilever resonance frequencies contain information about local tip-sample contact stiffness and can be used as imaging quantities. It has been demonstrated to be a powerful tool for the investigation of the local elastic prosperities of sample surface. The sample is tested in the contact mode, the resonant frequency of the cantilever is measured, by which the contact stiffness is calculated based on the model of vibration of the cantilever, and then the elastic property of sample is evaluated according to the contact theory. Therefore, the contact model has an important impact on the calculation of elastic modulus. This paper analyzes the contact model between the AFM probe and the sample, and it is investigated based on finite element method (FEM) that the results of the test are affected by parameters.


Sign in / Sign up

Export Citation Format

Share Document