Differential sensitivities of HeLa and MCF-7 cells at G1-, S-, G2- and M-phase of the cell cycle to cold atmospheric plasma

2020 ◽  
Vol 53 (12) ◽  
pp. 125202
Author(s):  
Hao Zhang ◽  
Jishen Zhang ◽  
Jie Ma ◽  
Jie Shen ◽  
Yan Lan ◽  
...  
2022 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Palanivel Naveen ◽  
Kaviyarasu Adhigaman ◽  
...  

A progression of new N-(3'-acetyl-8-nitro-2,3-dihydro-1H,3'H-spiro[quinoline-4,2'-[1,3,4]thiadiazol]-5'-yl) acetamide derivatives were synthesized from potent 8-nitro quinoline-thiosemicarbazones. The synthesized compounds were characterized by different spectroscopic studies and single X-ray crystallographic studies. The compounds were...


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6798
Author(s):  
Essmat M. El-Sheref ◽  
Mohammed A. I. Elbastawesy ◽  
Alan B. Brown ◽  
Ahmed M. Shawky ◽  
Hesham A. M. Gomaa ◽  
...  

A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.


2021 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Adhigaman Kaviyarasu ◽  
Sundarasamy Amsaveni ◽  
...  

Abstract A progression of novel thiadiazoline spiro quinoline derivatives were synthesized from potent thiadiazoline spiro quinoline derivatives . The synthesized compounds portrayed by different spectroscopic studies and single X-ray crystallographic studies. The compounds were assessed for in vitro anticancer properties towards MCF-7 and HeLa cells. The compounds showed superior inhibition action MCF-7 malignant growth cells. Amongst, the compound 4a showed significant inhibition activity, the cell death mechanism was evaluated by fluorescent staining, and flow cytometry, RT-PCR, and western blot analyses. The in vitro anticancer results revealed that the compound 4a induced apoptosis by inhibition of estrogen receptor alpha (ERα) and G2/M phase cell cycle arrest. The binding affinity of the compounds with ERα and pharmacokinetic properties were confirmed by molecular docking studies.


2019 ◽  
Vol 20 (9) ◽  
pp. 2184 ◽  
Author(s):  
Ahmed Dhahir Latif ◽  
Tímea Gonda ◽  
Máté Vágvölgyi ◽  
Norbert Kúsz ◽  
Ágnes Kulmány ◽  
...  

Naringenin is one of the most abundant dietary flavonoids exerting several beneficial biological activities. Synthetic modification of naringenin is of continuous interest. During this study our aim was to synthesize a compound library of oxime and oxime ether derivatives of naringenin, and to investigate their biological activities. Two oximes and five oxime ether derivatives were prepared; their structure has been elucidated by NMR and high-resolution mass spectroscopy. The antiproliferative activity of the prepared compounds was evaluated by MTT assay against human leukemia (HL-60) and gynecological cancer cell lines isolated from cervical (HeLa, Siha) and breast (MCF-7, MDA-MB-231) cancers. Tert-butyl oxime ether derivative exerted the most potent cell growth inhibitory activity. Moreover, cell cycle analysis suggested that this derivative caused a significant increase in the hypodiploid (subG1) phase and induced apoptosis in Hela and Siha cells, and induced cell cycle arrest at G2/M phase in MCF-7 cells. The proapoptotic potential of the selected compound was confirmed by the activation of caspase-3. Antioxidant activities of the prepared molecules were also evaluated with xanthine oxidase, DPPH and ORAC assays, and the methyl substituted oxime ether exerted the most promising activity.


2017 ◽  
Vol 41 (6) ◽  
pp. 2268-2278 ◽  
Author(s):  
Yu Li ◽  
Yong Cui ◽  
Wenxue Wang ◽  
Mingxing Ma ◽  
Meizhang Li ◽  
...  

Background/Aims: The serum inhibited gene (Si1) was named according to its inhibited expression in response to serum exposure. Si1 has an important relationship with tumors. Autophagy and apoptosis are two types of cell death. However, there are few studies regarding the association between Si1 and autophagy, or apoptosis in tumors. In this, we investigated the effect of Si1 on the proliferation and cell cycle progression of MCF-7 cells and its influence on autophagy and apoptosis in MCF-7 cells. Methods: To investigate these functions of Si1 in tumor cells, we firstly constructed a pEGFP-Si1 overexpression vector and a pSilencer-Si1 interference vector, and we subsequently tested the proliferation and cell cycle progression of MCF-7 cells using the MTT assay and flow cytometry, and we then detected autophagy by western blotting and MDC (Monodansylcadaverine) staining as well as apoptosis by western blotting and Hoechst 33258 staining. Results: We found that the Si1 gene can significantly inhibit the viability of MCF-7 cells and arrest the cell cycle at the G2/M phase. Si1 can induce autophagy through upregulation of LC3-II and Beclin1, it can induce apoptosis through cleavage of PARP in MCF-7 cells. Conclusion: Altogether, our study indicated that Si1 can inhibit cell proliferation of MCF-7, and also induces autophagy and apoptosis. This study firstly investigated the effect of Si1 on autophagy and apoptosis in MCF-7 cells. Moreover, it also improves the current understanding of the mechanisms related to the effect of Si1 on tumor cells and also provides a foundation for gene-targeted therapy.


Molecules ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 472 ◽  
Author(s):  
Jing-Ru Weng ◽  
Li-Yuan Bai ◽  
Wei-Yu Lin ◽  
Chang-Fang Chiu ◽  
Yu-Chang Chen ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1038
Author(s):  
Haodong Cui ◽  
Min Jiang ◽  
Wenhua Zhou ◽  
Ming Gao ◽  
Rui He ◽  
...  

A carrier-free CRISPR/Cas9 ribonucleoprotein delivery strategy for genome editing mediated by a cold atmospheric plasma (CAP) is described. The CAP is promising in many biomedical applications due to efficient production of bioactive ionized species. The MCF-7 cancer cells after CAP exposure exhibit increased extracellular reactive oxygen and nitrogen species (RONS) and altered membrane potential and permeability. Hence, transmembrane transport of Ca2+ into the cells increases and accelerates ATP hydrolysis, resulting in enhanced ATP-dependent endocytosis. Afterwards, the increased Ca2+ and ATP contents promote the release of cargo into cytoplasm due to the enhanced endosomal escape. The increased membrane permeability also facilitates passive diffusion of foreign species across the membrane into the cytosol. After CAP exposure, the MCF-7 cells incubated with Cas9 ribonucleoprotein (Cas9-sgRNA complex, Cas9sg) with a size of about 15 nm show 88.9% uptake efficiency and 65.9% nuclear import efficiency via passive diffusion and ATP-dependent endocytosis pathways. The efficient transportation of active Cas9sg after the CAP treatment leads to 21.7% and 30.2% indel efficiencies in HEK293T and MCF-7 cells, respectively. This CAP-mediated transportation process provides a simple and robust alternative for the delivery of active CRISPR/Cas9 ribonucleoprotein. Additionally, the technique can be extended to other macro-biomolecules and nanomaterials to cater to different biomedical applications.


2020 ◽  
Author(s):  
Meng Ning ◽  
Zhifa Zhang ◽  
Lihui Yu ◽  
Peiyu Han ◽  
xiaofeng Dai

Abstract BackgroundAndrogen receptor-independent prostate cancers do not respond to androgen blockage therapies and suffer from high recurrence rate. We aim to contribute to the establishment of novel therapeutic approaches against such malignancies.Methods We examined whether and how cold atmospheric plasma delivers selectivity against AR-independent prostate cancers using human normal epithelial prostatic cells PNT1A and AR-negative DU145 prostate cancer cells.ResultsWe show that cold atmospheric plasma could selectively halt cell proliferation and migration in androgen receptor-independent cells as a result of induced cell apoptosis and G0/G1 stage cell cycle arrest, and such outcomes were achieved through modulations on the MAPK and NF-kB pathways in response to physical plasma induced intracellular redox level. ConclusionOur study reports cold atmospheric plasma induced reduction on the proliferation and migration of androgen receptor-independent prostate cancer cells that offers novel therapeutic insights on the treatment of such cancers, and provides the first evidence on physical plasma induced cell cycle G0/G1 stage arrest that warrants the exploration on the synergistic use of cold atmospheric plasma and drugs such as chemotherapies in eradicating such cancer cells.


2006 ◽  
Vol 84 (5) ◽  
pp. 737-744 ◽  
Author(s):  
Weiyang Lin ◽  
Gilbert Arthur

The catabolism of phosphatidylcholine (PtdCho) appears to play a key role in regulating the net accumulation of the lipid in the cell cycle. Current protocols for measuring the degradation of PtdCho at specific cell-cycle phases require prolonged periods of incubation with radiolabelled choline. To measure the degradation of PtdCho at the S and G2 phases in the MCF-7 cell cycle, protocols were developed with radiolabelled lysophosphatidylcholine (lysoPtdCho), which reduces the labelling period and minimizes the recycling of labelled components. Although most of the incubated lysoPtdCho was hydrolyzed to glycerophosphocholine (GroPCho) in the medium, the kinetics of the incorporation of label into PtdCho suggests that the labelled GroPCho did not contribute significantly to cellular PtdCho formation. A protocol which involved exposing the cells twice to hydroxyurea, was also developed to produce highly synchronized MCF-7 cells with a profile of G1:S:G2/M of 90:5:5. An analysis of PtdCho catabolism in the synchronized cells following labelling with lysoPtdCho revealed that there was increased degradation of PtdCho in early to mid-S phase, which was attenuated in the G2/M phase. The results suggest that the net accumulation of PtdCho in MCF-7 cells may occur in the G2 phase of the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document