Terahertz interface physics: from terahertz wave propagation to terahertz wave generation

Author(s):  
Wanyi Du ◽  
Yuanyuan Huang ◽  
Yixuan Zhou ◽  
Xinlong Xu

Abstract Terahertz (THz) interface physics as a new interdiscipline between THz technique and condensed matter physics has undergone rapid developments in recent years. Especially, the developments of advanced materials, such as graphene, transitional metal dichalcogenides, topological insulators, ferromagnetic metals, and metamaterials, have revolutionized the interface field and further promotes the development of THz functional devices based on interface physics. Moreover, playing at the interface with these advanced materials could unveil a wealth of fascinating physical effects such as charge transfer, proximity effect, inverse spin-Hall effect, and Rashba effect with THz technology by engineering the charge, spin, orbit, valley, and lattice degrees of freedom. In this review, we start from the discussion of the basic theory of THz interface physics, including interface formation with advanced materials, THz wave reflection and transmission at the interface, and band alignment and charge dynamics at the interface. Then we move to recent progresses in advanced materials from THz wave propagation to THz wave generation at the interface. In the THz wave propagation, we focus on the THz wave impedance-matching, Goos–Hänchen and Imbert–Fedorov shifts in THz region, interfacial modulation and interfacial sensing based on THz wave. In the THz wave generation, we summarize the ongoing coherent THz wave generation from van der Waals interfaces, multiferroic interfaces, and magnetic interfaces. The fascinating THz interface physics in advanced materials is promising and promoting novel THz functional devices for manipulating the propagation and generation of THz wave at the interfaces.

2011 ◽  
Vol 20 (01) ◽  
pp. 3-12 ◽  
Author(s):  
JINGLE LIU ◽  
JIANMING DAI ◽  
XIAOFEI LU ◽  
I-CHEN HO ◽  
X.-C. ZHANG

Terahertz (THz) gas photonics uses gas as THz emitter and sensor for time-domain spectroscopy. Unique properties of the gas promise scalable, strong THz wave generation with broad spectral range covering the entire THz gas (0.3 THz to 35 THz). The systematic study of THz wave generation and detection in different gases shows that the generation efficiency is monotonically decreasing with the ionization potential of the gas molecules while the detection efficiency is linearly proportional to the third order nonlinear coefficient of the gas molecules. We also discuss the development of THz wave detection using laser-induced fluorescence and coherent control with THz gas photonics.


2015 ◽  
Vol 3 (11) ◽  
pp. 2548-2556 ◽  
Author(s):  
Yixuan Zhou ◽  
Yiwen E ◽  
Zhaoyu Ren ◽  
Haiming Fan ◽  
Xinlong Xu ◽  
...  

The potential of solution-processable reduced graphene oxide (rGO) films as wave impedance matching layers has been examined in a broad terahertz (THz) spectral bandwidth.


2019 ◽  
Vol 30 (19) ◽  
pp. 195705 ◽  
Author(s):  
Wanyi Du ◽  
Yixuan Zhou ◽  
Zehan Yao ◽  
Yuanyuan Huang ◽  
Chuan He ◽  
...  

Author(s):  
Mingxiao Gao ◽  
Jiaxin Zhang ◽  
Xinyuan Zhang ◽  
Degang Xu ◽  
Zhanggui Hu ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Ya-Wei Huan ◽  
Ke Xu ◽  
Wen-Jun Liu ◽  
Hao Zhang ◽  
Dmitriy Anatolyevich Golosov ◽  
...  

AbstractHybrid heterojunctions based on two-dimensional (2D) and conventional three-dimensional (3D) materials provide a promising way toward nanoelectronic devices with engineered features. In this work, we investigated the band alignment of a mixed-dimensional heterojunction composed of transferred MoS2 on β-Ga2O3($$ 2- $$2-01) with and without nitridation. The conduction and valence band offsets for unnitrided 2D-MoS2/3D-β-Ga2O3 heterojunction were determined to be respectively 0.43 ± 0.1 and 2.87 ± 0.1 eV. For the nitrided heterojunction, the conduction and valence band offsets were deduced to 0.68 ± 0.1 and 2.62 ± 0.1 eV, respectively. The modified band alignment could result from the dipole formed by charge transfer across the heterojunction interface. The effect of nitridation on the band alignments between group III oxides and transition metal dichalcogenides will supply feasible technical routes for designing their heterojunction-based electronic and optoelectronic devices.


CIRP Annals ◽  
2021 ◽  
Author(s):  
Yifan Zhang ◽  
Yuyang Zhao ◽  
Jundong Xu ◽  
Mengqi Rao ◽  
Yuehong Yin

Author(s):  
K. Parow-Souchon ◽  
D. Cuadrado-Calle ◽  
S. Rea ◽  
M. Henry ◽  
M. Merritt ◽  
...  

Abstract Realizing packaged state-of-the-art performance of monolithic microwave integrated circuits (MMICs) operating at millimeter wavelengths presents significant challenges in terms of electrical interface circuitry and physical construction. For instance, even with the aid of modern electromagnetic simulation tools, modeling the interaction between the MMIC and its package embedding circuit can lack the necessary precision to achieve optimum device performance. Physical implementation also introduces inaccuracies and requires iterative interface component substitution that can produce variable results, is invasive and risks damaging the MMIC. This paper describes a novel method for in situ optimization of packaged millimeter-wave devices using a pulsed ultraviolet laser to remove pre-selected areas of interface circuit metallization. The method was successfully demonstrated through the optimization of a 183 GHz low noise amplifier destined for use on the MetOp-SG meteorological satellite series. An improvement in amplifier output return loss from an average of 12.9 dB to 22.7 dB was achieved across an operational frequency range of 175–191 GHz and the improved circuit reproduced. We believe that our in situ tuning technique can be applied more widely to planar millimeter-wave interface circuits that are critical in achieving optimum device performance.


2020 ◽  
Vol 4 (6) ◽  
pp. 065007
Author(s):  
Yohei Sato ◽  
Chao Tang ◽  
Katsuya Watanabe ◽  
Junya Ohsaki ◽  
Takuya Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document