scholarly journals Neutron diffraction and ab initio studies on the fully compensated ferrimagnetic characteristics of Mn2V1-xCoxGa Heusler alloys

Author(s):  
Midhunlal P V ◽  
Venkatesh Chandragiri ◽  
J Arout Chelvane ◽  
P D Babu ◽  
Harish Kumar Narayanan

Abstract Neutron diffraction and ab initio studies were carried out on Mn2V1-xCoxGa (x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys which exhibits high TC fully compensated ferrimagnetic characteristics for x = 0.5. A combined analysis of neutron diffraction and ab initio calculations revealed the crystal structure and magnetic configuration which could not be determined from the X-ray diffraction and magnetic measurements. As reported earlier, Rietveld refinement of neutron diffraction data confirmed L21 structure for Mn2VGa and Xa structure for Mn2CoGa. The alloys with x = 0.25 and 0.5 possess L21 structure with Mn(C)-Co disorder. As the Co concentration reaches 0.75, a structural transition has been observed from disordered L21 to disordered X a. Detailed ab initio studies also confirmed this structural transition. The reason for the magnetic moment compensation in Mn2(V1-xCox)Ga was identified to be different from that of the earlier reported fully compensated ferrimagnet (MnCo)VGa. With the help of neutron diffraction and ab initio studies, it is identified that the disordered L21 structure with antiparallel coupling between the ferromagnetically aligned magnetic moments of (Mn(A)-Mn(C)) and (V-Co) atom pairs enables the compensation in Mn2V1-xCoxGa.

MRS Advances ◽  
2017 ◽  
Vol 2 (25) ◽  
pp. 1341-1346
Author(s):  
Monica Sorescu ◽  
Felicia Tolea ◽  
Mihaela Valeanu ◽  
Mihaela Sofronie

ABSTRACTSamples of Ni57-xNdxFe18Ga25 with x=2 and 4 were prepared in ribbon form by rapid quenching via melt spinning route. The samples were analyzed by X-ray diffraction (XRD), magnetic measurements and Mössbauer spectroscopy, both in the as-quenched form and after thermal annealing at 900 oC for 2 min and 400 °C for 2 hours. For x=2 the Nd atoms are completely dissolved in the Ni-Fe-Ga matrix, while for x=4 the additional occurrence of the secondary 2:17 phase could be resolved. These findings were supported by the analysis of hyperfine magnetic field distributions obtained from the non-linear least-squares fitting of the Mössbauer spectra.


2016 ◽  
Vol 81 (11) ◽  
pp. 1251-1262 ◽  
Author(s):  
Oluwafunmilayo Adekunle ◽  
Ray Butcher ◽  
Oladapo Bakare ◽  
Olusegun Odunola

[Cu(phen)2(CH3COO)](ClO4).2H2O (1) and [Cu(bipy)2(CH3COO)]-(ClO4).H2O (2) {phen = 1,10-phenanthroline, bipy = 2,2?-bipyridine}were synthesized and characterized. The complexes were characterized by employying elemental analyses, infrared and UV-Visible spectroscopy, room temperature magnetic measurements and the crystal structures elucidated using X-ray diffraction experiment. The redox properties of the complexes were also investigated. Both structures have a square pyramidal CuN4O chromophore which exhibit significant distortions due to long Cu-O [2.217(3) ? for (1) and 2.179 (1) for (2)] and Cu-N [2.631(2) ? for (1) and 2.714(1) ? for (2)] bonds. This distortion if further shown by the O-Cu-N bond angles [147.71(8) o for (1) and 153.40(5) o for (2)]. The elemental analyses further support the structural details unveiled by the single crystal X-ray diffraction analysis. The infrared spectra shows the acetate vibrational frequencies at 1587 cm-1,1428 cm-1, 1314 cm-1 for (1) and 1571 cm-1, 1441 cm-1, 1319c m-1 for (2) and the perchlo-rate bands at 1059 cm-1, 720 cm-1 (1) and 1080 cm-1,768 cm-1 (2). The broad d-d bands for the copper ion at 14,514 cm-1(1) and 14,535 cm-1(2) support the adoption of square pyramid geometries. The magnetic moments for the two complexes are 1.83 B.M for (1) and 1.72 B.M for (2). The peak to peak values of the two complexes show that the electrode reactions are quasi-reversibile with ?Ep = 0.023V (1) and 0.025V for (2). In both structures, there are ?-? intermolecular interactions in addition to hydrogen bonding between the units.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1582
Author(s):  
Asma Wederni ◽  
Mihail Ipatov ◽  
Eloi Pineda ◽  
Lluisa Escoda ◽  
Julian-Maria González ◽  
...  

Martensitic transition and magnetic response of Ni50−x Pdx,y Mn36 Sn14−y (x = 0, 1, 2 and y = 0, 1) Heusler alloys were analysed. The crystalline structure of each composition was solved by X-ray diffraction pattern fitting. For x = 1 and 2, the L21 austenite structure is formed and, for y = 1, the crystallographic phase is a modulated martensitic structure. From differential scanning calorimetry scans, we determine characteristic transformation temperatures and the entropy/enthalpy changes. The temperatures of the structural transformation increase with the addition of Pd to replace Ni or Sn, whereas the austenitic Curie temperature remains almost unvarying. In addition, the magneto-structural transition, investigated by magnetic measurements, is adjusted by suitable Pd doping in the alloys. The peak value of the magnetic entropy changes reached 4.5 J/(kg K) for Ni50Mn36Sn13Pd1 (external field: 50 kOe).


IUCrJ ◽  
2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Emil Andreasen Klahn ◽  
Emil Damgaard-Møller ◽  
Lennard Krause ◽  
Iurii Kibalin ◽  
Arsen Gukasov ◽  
...  

In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX 2tmtu2 [X = Cl(1) and Br(2), tmtu = tetramethylthiourea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bisector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the d xy orbital to be stabilized relative to the d xz and d yz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of d xy and d x 2  −  y 2 . Experimental d-orbital populations support this interpretation, showing in addition that the metal–ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.


2020 ◽  
Vol 85 (4) ◽  
pp. 453-466
Author(s):  
Marko Rodic ◽  
Vukoslava Miskov-Pajic ◽  
Vukadin Leovac ◽  
Mirjana Radanovic ◽  
Ljiljana Vojinovic-Jesic ◽  
...  

In the reaction of acetone solutions of CoX2?nH2O (X = Cl, Br) with methyl pyruvate semi/thiosemicarbazone (Hmps, Hmpt) the first Co(II) complexes with these ligands, i.e., [Co(Hmps)(H2O)X2] (X = Cl (1), Br (2)), [Co(Hmpt)2][CoCl4]?2H2? (3) and [Co(Hmpt)2]Br2?Me2CO (4) were obtained. Complexes 1 and 2 represent the first examples of metal complexes of Hmps. All the obtained compounds were characterized by elemental analysis, conductometry, magnetic measurements, and IR spectra, and for complexes 2?4, single crystal X-ray diffraction analysis was also performed. The effective magnetic moments were close to the upper limit (5 ?B) for complexes 1 and 2, and close to the lower limit (4.4 ?B) for complexes 3 and 4, and as such are characteristic for high-spin Co(II) complexes. Structural analysis showed that both ligands coordinate in a neutral form in a tridentate manner, via the ester oxygen, imine nitrogen and the oxygen atom of the ureido (Hmps), or the sulfur atom of the thioureido group (Hmpt). The central metal atoms are situated in a deformed octahedral coordination environment. Complex 2 has cis-Br configuration, while complexes 3 and 4 have mer-configuration.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1117 ◽  
Author(s):  
E. M. Jefremovas ◽  
J. Alonso ◽  
M. de la Fuente Rodríguez ◽  
J. Rodríguez Fernández ◽  
J. I. Espeso ◽  
...  

A series of GdCu 2 nanoparticles with controlled sizes ranging from 7 nm to 40 nm has been produced via high-energy inert-gas ball milling. Rietveld refinements on the X-ray diffraction measurements ensure that the bulk crystalline I m m a structure is retained within the nanoparticles, thanks to the employed low milling times ranging from t = 0.5 to t = 5 h. The analysis of the magnetic measurements shows a crossover from Superantiferromagnetism (SAF) to a Super Spin Glass state as the size decreases at NP size of ⟨ D ⟩ ≈ 18 nm. The microstrain contribution, which is always kept below 1%, together with the increasing surface-to-core ratio of the magnetic moments, trigger the magnetic disorder. Additionally, an extra contribution to the magnetic disorder is revealed within the SAF state, as the oscillating RKKY indirect exchange achieves to couple with the aforementioned contribution that emerges from the size reduction. The combination of both sources of disorder leads to a maximised frustration for ⟨ D ⟩ ≈ 25 nm sized NPs.


Author(s):  
M. D. Vaudin ◽  
J. P. Cline

The study of preferred crystallographic orientation (texture) in ceramics is assuming greater importance as their anisotropic crystal properties are being used to advantage in an increasing number of applications. The quantification of texture by a reliable and rapid method is required. Analysis of backscattered electron Kikuchi patterns (BEKPs) can be used to provide the crystallographic orientation of as many grains as time and resources allow. The technique is relatively slow, particularly for noncubic materials, but the data are more accurate than any comparable technique when a sufficient number of grains are analyzed. Thus, BEKP is well-suited as a verification method for data obtained in faster ways, such as x-ray or neutron diffraction. We have compared texture data obtained using BEKP, x-ray diffraction and neutron diffraction. Alumina specimens displaying differing levels of axisymmetric (0001) texture normal to the specimen surface were investigated.BEKP patterns were obtained from about a hundred grains selected at random in each specimen.


1994 ◽  
Vol 376 ◽  
Author(s):  
M. Vrána ◽  
P. Klimanek ◽  
T. Kschidock ◽  
P. Lukáš ◽  
P. Mikula

ABSTRACTInvestigation of strongly distorted crystal structures caused by dislocations, stacking-faults etc. in both plastically deformed f.c.c. and b.c.c. metallic materials was performed by the analysis of the neutron diffraction line broadening. Measurements were realized by means of the high resolution triple-axis neutron diffractometer equipped by bent Si perfect crystals as monochromator and analyzer at the NPI Řež. The substructure parameters obtained in this manner are in good agreement with the results of X-ray diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document