scholarly journals Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology

2017 ◽  
Vol 29 (1) ◽  
pp. 015110 ◽  
Author(s):  
Xinping Yan ◽  
Xiaojian Xu ◽  
Chenxing Sheng ◽  
Chengqing Yuan ◽  
Zhixiong Li
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Bincheng Wen ◽  
Mingqing Xiao ◽  
Guanghao Wang ◽  
Zhao Yang ◽  
Jianfeng Li ◽  
...  

2021 ◽  
pp. 113558
Author(s):  
You Cao ◽  
Zhijie Zhou ◽  
Changhua Hu ◽  
Shuaiwen Tang ◽  
Jie Wang

2021 ◽  
Vol 64 (7) ◽  
Author(s):  
Zhijie Zhou ◽  
You Cao ◽  
Guanyu Hu ◽  
Youmin Zhang ◽  
Shuaiwen Tang ◽  
...  

2021 ◽  
Vol 11 (13) ◽  
pp. 5810
Author(s):  
Faisal Ahmed ◽  
Mohammad Shahadat Hossain ◽  
Raihan Ul Islam ◽  
Karl Andersson

Accurate and rapid identification of the severe and non-severe COVID-19 patients is necessary for reducing the risk of overloading the hospitals, effective hospital resource utilization, and minimizing the mortality rate in the pandemic. A conjunctive belief rule-based clinical decision support system is proposed in this paper to identify critical and non-critical COVID-19 patients in hospitals using only three blood test markers. The experts’ knowledge of COVID-19 is encoded in the form of belief rules in the proposed method. To fine-tune the initial belief rules provided by COVID-19 experts using the real patient’s data, a modified differential evolution algorithm that can solve the constraint optimization problem of the belief rule base is also proposed in this paper. Several experiments are performed using 485 COVID-19 patients’ data to evaluate the effectiveness of the proposed system. Experimental result shows that, after optimization, the conjunctive belief rule-based system achieved the accuracy, sensitivity, and specificity of 0.954, 0.923, and 0.959, respectively, while for disjunctive belief rule base, they are 0.927, 0.769, and 0.948. Moreover, with a 98.85% AUC value, our proposed method shows superior performance than the four traditional machine learning algorithms: LR, SVM, DT, and ANN. All these results validate the effectiveness of our proposed method. The proposed system will help the hospital authorities to identify severe and non-severe COVID-19 patients and adopt optimal treatment plans in pandemic situations.


Author(s):  
Xinping Yan ◽  
Jinfen Zhang ◽  
Di Zhang ◽  
Carlos Guedes Soares

Concerns have been raised to navigational safety worldwide because of the increasing throughput and the passing ships during the past decades while maritime accidents such as collisions, groundings, overturns, oil-spills and fires have occurred, causing serious consequences. Formal Safety Assessment (FSA) has been acknowledged to be a framework widely used in maritime risk assessment. Under this framework, this paper discusses certain existing challenges when an effective safety assessment is carried out under a variety of uncertainties. Some theories and methodologies are proposed to overcome the present challenges, e.g., Fault/Event Tree Analysis (FTA/ETA), Evidential Reasoning (ER), Bayesian Belief Network (BBN) and Belief Rule Base (BRB). Subsequently, three typical case studies that have been carried out in the Yangtze River are introduced to illustrate the general application of those approaches. These examples aim to demonstrate how advanced methodologies can facilitate navigational risk assessment under high uncertainties.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 34487-34499
Author(s):  
Yu Guan ◽  
Yanggeng Fu ◽  
Longjiang Chen ◽  
Genggeng Liu ◽  
Lan Sun

1990 ◽  
Vol 27 (04) ◽  
pp. 237-249
Author(s):  
Anastassios N. Perakis ◽  
Bahadir Inozu

Some essential steps for the application of reliability, availability, and maintainability (RAM) techniques to marine diesel engines are presented. The paper begins with a summary of the basic concepts of reliability engineering, followed by a survey of the relevant literature on RAM applications to the marine industry and to marine diesel engines in particular. Next, the results of an informal survey of the reliability, maintenance, and replacement practices of Great Lakes operators are presented. Finally, the first two steps for a RAM application, failure modes and effects analysis and fault tree analysis, are introduced and applied for a prototype Colt-Pielstick marine diesel engine.


2015 ◽  
Author(s):  
Jerry Ng ◽  
Kaisa Honkanen

Emulsified fuel technology has been developed since the early 1980’s to the improve combustion efficiency of marine diesel engines by creating a secondary atomization effect after the initial fuel injection. The main challenge is to measure the improved sfoc of ships accurately and reliably. This paper presents a proposed method to measure the sfoc accurately and reliably to the order of 1%. Electronic governor also poses new challenge to measuring the sfoc of ships burning emulsified fuel. Meanwhile, fuel types supplied to ship owners are of increased varying properties although still complying to ISO8217 standard. This paper describes the innovations in emulsified fuel technology that were developed to meet these challenges.


Sign in / Sign up

Export Citation Format

Share Document