Deep Learning Model for Imbalanced Multi-label Surface Defect Classification

Author(s):  
Yang Liu ◽  
Yachao Yuan ◽  
Jing Liu

Abstract Automatic defect classification is vital to ensure product quality, especially for steel production. In the real world, the amount of collected samples with labels is limited due to high labor costs, and the gathered dataset is usually imbalanced, making accurate steel defect classification very challenging. In this paper, a novel deep learning model for imbalanced multi-label surface defect classification, named ImDeep, is proposed. It can be deployed easily in steel production lines to identify different defect types on the steel's surface. ImDeep incorporates three key techniques, i.e., Imbalanced Sampler, Fussy-FusionNet, and Transfer Learning. It improves the model's classification performance with multi-label and reduces the model's complexity over small datasets with low latency. The performance of different fusion strategies and three key techniques of ImDeep is verified. Simulation results prove that ImDeep accomplishes better performance than the state-of-the-art over the public dataset with varied sizes. Specifically, ImDeep achieves about 97% accuracy of steel surface defect classification over a small imbalanced dataset with a low latency, which improves about 10% compared with that of the state-of-the-art.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Rao ◽  
Y Li ◽  
R Ramakrishnan ◽  
A Hassaine ◽  
D Canoy ◽  
...  

Abstract Background/Introduction Predicting incident heart failure has been challenging. Deep learning models when applied to rich electronic health records (EHR) offer some theoretical advantages. However, empirical evidence for their superior performance is limited and they remain commonly uninterpretable, hampering their wider use in medical practice. Purpose We developed a deep learning framework for more accurate and yet interpretable prediction of incident heart failure. Methods We used longitudinally linked EHR from practices across England, involving 100,071 patients, 13% of whom had been diagnosed with incident heart failure during follow-up. We investigated the predictive performance of a novel transformer deep learning model, “Transformer for Heart Failure” (BEHRT-HF), and validated it using both an external held-out dataset and an internal five-fold cross-validation mechanism using area under receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC). Predictor groups included all outpatient and inpatient diagnoses within their temporal context, medications, age, and calendar year for each encounter. By treating diagnoses as anchors, we alternatively removed different modalities (ablation study) to understand the importance of individual modalities to the performance of incident heart failure prediction. Using perturbation-based techniques, we investigated the importance of associations between selected predictors and heart failure to improve model interpretability. Results BEHRT-HF achieved high accuracy with AUROC 0.932 and AUPRC 0.695 for external validation, and AUROC 0.933 (95% CI: 0.928, 0.938) and AUPRC 0.700 (95% CI: 0.682, 0.718) for internal validation. Compared to the state-of-the-art recurrent deep learning model, RETAIN-EX, BEHRT-HF outperformed it by 0.079 and 0.030 in terms of AUPRC and AUROC. Ablation study showed that medications were strong predictors, and calendar year was more important than age. Utilising perturbation, we identified and ranked the intensity of associations between diagnoses and heart failure. For instance, the method showed that established risk factors including myocardial infarction, atrial fibrillation and flutter, and hypertension all strongly associated with the heart failure prediction. Additionally, when population was stratified into different age groups, incident occurrence of a given disease had generally a higher contribution to heart failure prediction in younger ages than when diagnosed later in life. Conclusions Our state-of-the-art deep learning framework outperforms the predictive performance of existing models whilst enabling a data-driven way of exploring the relative contribution of a range of risk factors in the context of other temporal information. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): National Institute for Health Research, Oxford Martin School, Oxford Biomedical Research Centre


2021 ◽  
Vol 14 (11) ◽  
pp. 1950-1963
Author(s):  
Jie Liu ◽  
Wenqian Dong ◽  
Qingqing Zhou ◽  
Dong Li

Cardinality estimation is a fundamental and critical problem in databases. Recently, many estimators based on deep learning have been proposed to solve this problem and they have achieved promising results. However, these estimators struggle to provide accurate results for complex queries, due to not capturing real inter-column and inter-table correlations. Furthermore, none of these estimators contain the uncertainty information about their estimations. In this paper, we present a join cardinality estimator called Fauce. Fauce learns the correlations across all columns and all tables in the database. It also contains the uncertainty information of each estimation. Among all studied learned estimators, our results are promising: (1) Fauce is a light-weight estimator, it has 10× faster inference speed than the state of the art estimator; (2) Fauce is robust to the complex queries, it provides 1.3×--6.7× smaller estimation errors for complex queries compared with the state of the art estimator; (3) To the best of our knowledge, Fauce is the first estimator that incorporates uncertainty information for cardinality estimation into a deep learning model.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1756 ◽  
Author(s):  
Abdul Wahab ◽  
Omid Mahmoudi ◽  
Jeehong Kim ◽  
Kil To Chong

N4-methylcytosine as one kind of modification of DNA has a critical role which alters genetic performance such as protein interactions, conformation, stability in DNA as well as the regulation of gene expression same cell developmental and genomic imprinting. Some different 4mC site identifiers have been proposed for various species. Herein, we proposed a computational model, DNC4mC-Deep, including six encoding techniques plus a deep learning model to predict 4mC sites in the genome of F. vesca, R. chinensis, and Cross-species dataset. It was demonstrated by the 10-fold cross-validation test to get superior performance. The DNC4mC-Deep obtained 0.829 and 0.929 of MCC on F. vesca and R. chinensis training dataset, respectively, and 0.814 on cross-species. This means the proposed method outperforms the state-of-the-art predictors at least 0.284 and 0.265 on F. vesca and R. chinensis training dataset in turn. Furthermore, the DNC4mC-Deep achieved 0.635 and 0.565 of MCC on F. vesca and R. chinensis independent dataset, respectively, and 0.562 on cross-species which shows it can achieve the best performance to predict 4mC sites as compared to the state-of-the-art predictor.


2021 ◽  
Author(s):  
R. Tyler McLaughlin ◽  
Maansi Asthana ◽  
Marc Di Meo ◽  
Michele Ceccarelli ◽  
Howard J. Jacob ◽  
...  

In precision oncology, reliable identification of tumor-specific DNA mutations requires sequencing tumor DNA and non-tumor DNA (so-called "matched normal") from the same patient. The normal sample allows researchers to distinguish acquired (somatic) and hereditary (germline) variants. The ability to distinguish somatic and germline variants facilitates estimation of tumor mutation burden (TMB), which is a recently FDA-approved pan-cancer marker for highly successful cancer immunotherapies; in tumor-only variant calling (i.e., without a matched normal), the difficulty in discriminating germline and somatic variants results in inflated and unreliable TMB estimates. We apply machine learning to the task of somatic vs germline classification in tumor-only samples using TabNet, a recently developed attentive deep learning model for tabular data that has achieved state of the art performance in multiple classification tasks (Arik and Pfister 2019). We constructed a training set for supervised classification using features derived from tumor-only variant calling and drawing somatic and germline truth-labels from an independent pipeline incorporating the patient-matched normal samples. Our trained model achieved state-of-the-art performance on two hold-out test datasets: a TCGA dataset including sarcoma, breast adenocarcinoma, and endometrial carcinoma samples (F1-score: 88.3), and a metastatic melanoma dataset, (F1-score 79.8). Concordance between matched-normal and tumor-only TMB improves from R2 = 0.006 to 0.705 with the addition of our classifier. And importantly, this approach generalizes across tumor tissue types and capture kits and has a call rate of 100%. The interpretable feature masks of the attentive deep learning model explain the reasons for misclassified variants. We reproduce the recent finding that tumor-only TMB estimates for Black patients are extremely inflated relative to that of White patients due to the racial biases of germline databases. We show that our machine learning approach appreciably reduces this racial bias in tumor-only variant-calling.


Author(s):  
Shikhar Saxena ◽  
Sambhavi Animesh ◽  
Melissa J. Fullwood ◽  
Yuguang Mu

Abstract The peptide binding to Major Histocompatibility Complex (MHC) proteins is an important step in the antigen-presentation pathway. Thus, predicting the binding potential of peptides with MHC is essential for the design of peptide-based therapeutics. Most of the available machine learning-based models predict the peptide-MHC binding based on the sequence of amino acids alone. Given the importance of structural information in determining the stability of the complex, here we have utilized both the complex structure and the peptide sequence features to predict the binding affinity of peptides to human receptor HLA-A*02:01. To our knowledge, no such model has been developed for the human HLA receptor before that incorporates both structure and sequence-based features. Results: We have applied machine learning techniques through the natural language processing (NLP) and convolutional neural network to design a model that performs comparably with the existing state-of-the-art models. Our model shows that the information from both sequence and structure domains results in enhanced performance in the binding prediction compared to the information from one domain alone. The testing results in 18 weekly benchmark datasets provided by the Immune Epitope Database (IEDB) as well as experimentally validated peptides from the whole-exome sequencing analysis of the breast cancer patients indicate that our model has achieved state-of-the-art performance. Conclusion: We have developed a deep-learning model (OnionMHC) that incorporates both structure as well as sequence-based features to predict the binding affinity of peptides with human receptor HLA-A*02:01. The model demonstrates state-of-the-art performance on the IEDB benchmark dataset as well as the experimentally validated peptides. The model can be used in the screening of potential neo-epitopes for the development of cancer vaccines or designing peptides for peptide-based therapeutics. OnionMHC is freely available at https://github.com/shikhar249/OnionMHC .


Author(s):  
Guilherme Del Fiol ◽  
Matthew Michelson ◽  
Alfonso Iorio ◽  
Chris Cotoi ◽  
R Brian Haynes

BACKGROUND A major barrier to the practice of evidence-based medicine is efficiently finding scientifically sound studies on a given clinical topic. OBJECTIVE To investigate a deep learning approach to retrieve scientifically sound treatment studies from the biomedical literature. METHODS We trained a Convolutional Neural Network using a noisy dataset of 403,216 PubMed citations with title and abstract as features. The deep learning model was compared with state-of-the-art search filters, such as PubMed’s Clinical Query Broad treatment filter, McMaster’s textword search strategy (no Medical Subject Heading, MeSH, terms), and Clinical Query Balanced treatment filter. A previously annotated dataset (Clinical Hedges) was used as the gold standard. RESULTS The deep learning model obtained significantly lower recall than the Clinical Queries Broad treatment filter (96.9% vs 98.4%; P<.001); and equivalent recall to McMaster’s textword search (96.9% vs 97.1%; P=.57) and Clinical Queries Balanced filter (96.9% vs 97.0%; P=.63). Deep learning obtained significantly higher precision than the Clinical Queries Broad filter (34.6% vs 22.4%; P<.001) and McMaster’s textword search (34.6% vs 11.8%; P<.001), but was significantly lower than the Clinical Queries Balanced filter (34.6% vs 40.9%; P<.001). CONCLUSIONS Deep learning performed well compared to state-of-the-art search filters, especially when citations were not indexed. Unlike previous machine learning approaches, the proposed deep learning model does not require feature engineering, or time-sensitive or proprietary features, such as MeSH terms and bibliometrics. Deep learning is a promising approach to identifying reports of scientifically rigorous clinical research. Further work is needed to optimize the deep learning model and to assess generalizability to other areas, such as diagnosis, etiology, and prognosis.


2020 ◽  
Author(s):  
Shikhar Saxena ◽  
Sambhavi Animesh ◽  
Melissa Fullwood ◽  
Yuguang Mu

Abstract Background:The peptide binding to Major Histocompatibility Complex (MHC) proteins is an important step in the antigen-presentation pathway. Thus, predicting the binding potential of peptides with MHC is essential for the design of peptide-based therapeutics. Most of the available machine learning-based models predict the peptide-MHC binding based on the sequence of amino acids alone. Given the importance of structural information in determining the stability of the complex, here we have utilized both the complex structure and the peptide sequence features to predict the binding affinity of peptides to human receptor HLA-A*02:01. To our knowledge, no such model has been developed for the human HLA receptor before that incorporates both structure and sequence-based features.Results:We have applied machine learning techniques through the natural language processing (NLP) and convolutional neural network to design a model that performs comparably with the existing state-of-the-art models. Our model shows that the information from both sequence and structure domains results in enhanced performance in the binding prediction compared to the information from one domain alone. The testing results in 18 weekly benchmark datasets provided by the Immune Epitope Database (IEDB) as well as experimentally validated peptides from the whole-exome sequencing analysis of the breast cancer patients indicate that our model has achieved state-of-the-art performance.Conclusion: We have developed a deep-learning model (OnionMHC) that incorporates both structure as well as sequence-based features to predict the binding affinity of peptides with human receptor HLA-A*02:01. The model demonstrates state-of-the-art performance on the IEDB benchmark dataset as well as the experimentally validated peptides. The model can be used in the screening of potential neo-epitopes for the development of cancer vaccines or designing peptides for peptide-based therapeutics. OnionMHC is freely available at https://github.com/shikhar249/OnionMHC


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document