Dynamic lung compliance imaging from 4DCT-derived volume change estimation

Author(s):  
Girish B. Nair ◽  
Sayf Al-Katib ◽  
Robert Podolsky ◽  
Thomas J Quinn ◽  
Craig Steven ◽  
...  
PEDIATRICS ◽  
1967 ◽  
Vol 40 (6) ◽  
pp. 962-974
Author(s):  
W. A. Aherne ◽  
K. W. Cross ◽  
E. N. Hey ◽  
Sheila R. Lewis

Detailed lung function studies at the age of 8 months and 1 year are reported for an infant who weighed 992 gm at birth and who developed chronic progressive pulmonary insufficiency 2 weeks after birth. The symptoms and signs were similar to those described by Wilson and Mikity in 1960. A confirmatory lung biopsy was obtained when the child was 11 months old. Dynamic lung "compliance" was very significantly reduced while a static estimate of lung compliance was within normal limits. These and other lung function findings are interpreted as indicating that uneven alveolar ventilation was the probable functional basis for all the signs and symptoms observed.


1986 ◽  
Vol 60 (3) ◽  
pp. 743-750 ◽  
Author(s):  
K. J. Sullivan ◽  
J. P. Mortola

Static (Cstat) and dynamic (Cdyn) lung compliance and lung stress relaxation were examined in isolated lungs of newborn kittens and adult cats. Cstat was determined by increasing volume in increments and recording the corresponding change in pressure; Cdyn was calculated as the ratio of the changes in volume to transpulmonary pressure between points of zero flow at ventilation frequencies between 10 and 110 cycles/min. Lung volume history, end-inflation volume, and end-deflation pressure were maintained constant. At the lowest frequency of ventilation, Cdyn was less than Cstat, the difference being greater in newborns. Between 20 and 100 cycles/min, Cdyn of the newborn lung remained constant, whereas Cdyn of the adult lung decreased after 60 cycles/min. At all frequencies, the rate of stress relaxation, measured as the decay in transpulmonary pressure during maintained inflation, was greater in newborns than in adults. The frequency response of Cdyn in kittens, together with the relatively greater rate of stress relaxation, suggests that viscoelasticity contributes more to the dynamic stiffening of the lung in newborns than in adults. A theoretical treatment of the data based on a linear model of viscoelasticity supports this conclusion.


1986 ◽  
Vol 61 (1) ◽  
pp. 103-112 ◽  
Author(s):  
L. J. Jin ◽  
C. Lalonde ◽  
R. H. Demling

We studied whether changes in lung function after burns (1- to 12-h period) were due to changes in lung water or airways resistance and the relationship of the changes to prostanoid and O2 radical activity (measured as lipid peroxidation). Twenty-five anesthetized mechanically ventilated adult sheep were given a 40% of body surface scald burn and resuscitated to restore and maintain base-line filling pressures. Dynamic lung compliance (Cdyn) decreased by 40% from 38 +/- 5 to 24 +/- 4 ml/cmH2O at 12 h. Venous thromboxane B2 transiently increased from 210 +/- 40 to 1,100 +/- 210 pg/ml, and the value in lung lymph increased from 180 +/- 80 to 520 +/- 80 pg/ml. Prostacyclin levels in lung lymph and plasma remained at base line. Protein-poor lung lymph flow increased two- to threefold, but postmortem lung analysis revealed no increase in lung water from the control of 3.5 +/- 0.3 g H2O/g dry wt. No increase in protein permeability was seen. However, the lipid peroxidation of lung tissue measured as malondialdehyde was significantly increased from the control value of 56 +/- 4 nmol/g lung to a value of 69 +/- 6. Ibuprofen pretreatment (12.5 mg/kg) markedly attenuated the decrease in Cdyn, with the value at 12 h being 90% of base line. Ibuprofen also decreased the amount of lung lipid peroxidation but did not decrease the lung lymph response. We conclude that the decrease in Cdyn seen early postburn is not due to increased lung water, but, rather, is due to a mediator-induced bronchoconstriction, attenuated by ibuprofen; the mediator being either thromboxane or a byproduct of O2 radicals as evidenced by increased lipid peroxide production in lung tissue.


1990 ◽  
Vol 69 (5) ◽  
pp. 1786-1791
Author(s):  
D. C. Thompson ◽  
J. L. Szarek ◽  
R. J. Altiere ◽  
L. Diamond

SO2 is an environmental pollutant known to elicit bronchospasm in susceptible subjects. We observed that brief exposure of artificially bronchoconstricted cats to high concentrations of SO2 induces a bronchodilator response. This study assessed the characteristics of this response and examined various mechanisms that might underlie it. Cats were anesthetized with diallylbarbital-urethan, and airway smooth muscle tone, measured by lung resistance and dynamic lung compliance, was elevated with a continuous infusion of 5-hydroxytryptamine. Administration of 10 breaths of SO2 via a tracheostomy induced concentration-dependent bronchodilation in the range 100-1,000 parts/million. Only infrequently was bronchoconstriction observed before bronchodilation. SO2-induced bronchodilator responses were unaffected by pretreatment with intravenous atropine or propranolol, establishing them as nonadrenergic noncholinergic (NANC) in origin. Neither the ganglionic blocking agent hexamethonium nor the nerve toxin tetrodotoxin influenced the SO2-induced bronchodilation, thus excluding a role for central or local autonomic reflexes in the response. Efforts to modulate the response by pretreatment with the cyclooxygenase inhibitor indomethacin or the mediator release inhibitor cromolyn sodium also were unsuccessful. Administration of acidic aerosols failed to mimic the SO2-induced bronchodilator response. Although the mechanism whereby SO2 induces bronchodilation under these experimental conditions remains unclear, release of a NANC inhibitory transmitter from a neural, epithelial, or other cellular source via a mechanism insensitive to both tetrodotoxin and cromolyn is a distinct possibility. An intrinsic NANC inhibitory system may exist in feline airways functioning as a local regulator of bronchomotor tone and possibly serving to override responses to strong, potentially asphyxial bronchoconstrictive stimuli.


1982 ◽  
Vol 53 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
W. J. Lamm ◽  
J. R. Hildebrandt ◽  
J. Hildebrandt ◽  
Y. L. Lai

Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated. Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated. Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated. Functional residual capacity (FRC), tidal volume (VT), and frequency (f) were compared in 23 rats while either awake and unrestrained or anesthetized. FRC was determined from gas compression with closed airway inside a cone-shaped body plethysmograph. In the awake state (mean +/- SD), FRC was 1.02 +/- 0.22 ml/100 g, VT was 0.38 +/- 0.06 ml/100 g, and f was 142 +/- 22 breaths/min. During anesthesia, FRC decreased (P less than 0.01) to 52.9% of awake values, VT increased (P less than 0.01) to 147.4%, and f decreased (P less than 0.01) to 71.8%, leaving minute ventilation almost unchanged. An additional seven rats were used to examine postural effects on FRC during anesthesia, and in another seven animals pleural pressure changes were monitored. Dynamic lung compliance (0.80 ml . kg-1 X cmH2O-1) was not altered by anesthesia, but the pressure-volume curve was shifted 6 cmH2O higher. Thoracic compression, followed by a time-dependent effect of volume history, may account for the major change in FRC. The remainder of the decrease in FRC may be due to lower breathing frequency, loss of inspiratory muscle activity, and/or less airway resistance after anesthesia. Peak diaphragmatic electromyogram per unit VT was shown to increase almost linearly with FRC, indicating that diaphragmatic efficiency was decreased as lung volume was elevated.


1985 ◽  
Vol 58 (2) ◽  
pp. 528-533 ◽  
Author(s):  
J. P. Mortola ◽  
D. Magnante ◽  
M. Saetta

The passive mechanical time constant (tau pass) of the respiratory system is relatively similar among newborn mammalian species, approximately 0.15–0.2 s. However, breathing rate (f) is higher in smaller species than larger species in order to accommodate the relatively larger metabolic demands. Since tidal volume per kilogram is an interspecies constant, in the fastest breathing species the short expiratory time should determine a substantial dynamic elevation of the functional residual capacity (FRC). We examined the possibility of a difference in expiratory time constant between dynamic and passive conditions by analyzing the expiratory flow pattern of nine newborn unanesthetized species during resting breathing. In most newborns the late portion of the expiratory flow-volume curve was linear, suggesting muscle relaxation. The slope of the curve, which represents the dynamic expiratory time constant of the respiratory system (tau exp), varied considerably among animals (from 0.1 to 0.7 s), being directly related to the inspiratory time and inversely proportional to f. In relatively slow-breathing newborns, such as infants and piglets, tau exp is longer than tau pass most likely due to an increase in the expiratory laryngeal resistance and FRC is substantially elevated. On the contrary, in the fastest breathing newborns (such as rats and mice) tau exp is similar or even less than tau pass, because at these high rates dynamic lung compliance is lower than its passive value and the dynamic elevation of FRC is small. In dynamic conditions, therefore, the product of tau exp and f is maintained within narrow limits.


1997 ◽  
Vol 83 (3) ◽  
pp. 958-965 ◽  
Author(s):  
Zhong-Xin Wu ◽  
Robert F. Morton ◽  
Lu-Yuan Lee

Wu, Zhong-Xin, Robert F. Morton, and Lu-Yuan Lee. Role of tachykinins in ozone-induced airway hyperresponsiveness to cigarette smoke in guinea pigs. J. Appl. Physiol. 83(3): 958–965, 1997.—Acute exposure to ozone (O3) induces airway hyperresponsiveness to various inhaled bronchoactive substances. Inhalation of cigarette smoke, a common inhaled irritant in humans, is known to evoke a transient bronchoconstrictive effect. To examine whether O3 increases airway responsiveness to cigarette smoke, effects of smoke inhalation challenge on total pulmonary resistance (Rl) and dynamic lung compliance (Cdyn) were compared before and after exposure to O3 (1.5 ppm, 1 h) in anesthetized guinea pigs. Before O3 exposure, inhalation of two breaths of cigarette smoke (7 ml) at a low concentration (33%) induced a mild and reproducible bronchoconstriction that slowly developed and reached its peak (ΔRl= 67 ± 19%, ΔCdyn = −29 ± 6%) after a delay of >1 min. After exposure to O3 the same cigarette smoke inhalation challenge evoked an intense bronchoconstriction that occurred more rapidly, reaching its peak (ΔRl = 620 ± 224%, ΔCdyn = −35 ± 7%) within 20 s, and was sustained for >2 min. By contrast, sham exposure to room air did not alter the bronchomotor response to cigarette smoke challenge. Pretreatment with CP-99994 and SR-48968, the selective antagonists of neurokinin type 1 and 2 receptors, respectively, completely blocked the enhanced responses of Rl and Cdyn to cigarette smoke challenge induced by O3. These results show that O3 exposure induces airway hyperresponsiveness to inhaled cigarette smoke and that the enhanced responses result primarily from the bronchoconstrictive effect of endogenous tachykinins.


1991 ◽  
Vol 70 (1) ◽  
pp. 384-390 ◽  
Author(s):  
S. C. Inscore ◽  
K. R. Stenmark ◽  
C. Orton ◽  
C. G. Irvin

Neonates and infants presenting with pulmonary hypertension and chronic hypoxia often exhibit airway obstruction. To investigate this association, we utilized a system in which neonatal calves are exposed to chronic hypobaric hypoxia and develop severe pulmonary hypertension. For the present study, one of each pair of six age-matched pairs of neonatal calves was continuously exposed to hypobaric hypoxia at 4,500 m (CH); the other remained at 1,500 m. At 2 wk of age, mean pulmonary arterial pressure (MPAP), dynamic lung compliance (Cdyn), resistance (RL), and static respiratory system compliance (Crs) were measured at 4,500 m in both CH and control calves exposed acutely to hypoxia (C). These measurements were repeated after cumulative administrations of nebulized methacholine (MCh). Tissues were removed for histological examination and assessment of bronchial ring contractility to MCh and KCl. After 2 wk of hypobaric hypoxia, MPAP (C 35 +/- 1.7 vs. CH 120 +/- 7 mmHg, P less than 0.001) and RL (C 2.64 +/- 0.16 vs CH 4.99 +/- 0.47 cmH2O.l-1s, P less than 0.001) increased. Cdyn (C 0.100 +/- 0.01 vs. CH 0.082 +/- 0.007 l/cmH2O) and Crs (CH 0.46 +/- 0.003 vs. C 0.59 +/- 0.009 l/cmH2O) were not significantly different. Compared with airways of C calves, airways of CH animals did not exhibit in vivo or in vitro MCh hyperresponsiveness; however, in vitro contractility to KCl of airways from CH animals was significantly increased. Histologically, airways from the CH calves showed increases in airway fibrous tissue and smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


1979 ◽  
Vol 47 (2) ◽  
pp. 418-424 ◽  
Author(s):  
J. W. Ramsdell ◽  
P. F. Georghiou

We studied the effect of prolonged airways obstruction induced by extended cholinergic stimulation in five anesthetized, mechanically ventilated dogs. A continuous intravenous metacholine infusion was utilized to maintain pulmonary resistance (RL) at 200--1500% preinfusion levels for 13--23 h. At maximum RL (18.86 +/- 7.74 vs. 2.09 +/- 0.18 (mean +/- SD) cmH2O/ (L/S) PREINfusion; P less than 0.01), dynamic lung compliance (Cdyn) fell from 67.5 +/- 14.6 to 32.7 +/- 11.6 ml/cmH2O (P less than 0.005) and arterial partial pressure of oxygen (PaO2) fell modestly from 95.8 +/- 6.1 Torr preinfusion to 83.2 +/- 12.7 Torr (P less than 0.05). Tachyphylaxis to methacholine developed, requiring increases in infusion rates to maintain elevated RL. Abnormalities in lung function resolved promptly upon termination of the infusion. Two similarly instrumented control animals ventilated for 19 and 25 h without metacholine infusion had no change in RL, Cdyn, or PaO2. Histological examination of the lungs revealed no differences between infused and control animals. In spite of marked increases in RL, prolonged cholinergic stimulation produced only mild changes in gas exchange and no sustained changes in lung function or structure.


Sign in / Sign up

Export Citation Format

Share Document