Vascular ageing and peripheral pulse: an improved model for assessing their relationship

Author(s):  
Cosimo Aliani ◽  
Eva Rossi ◽  
Piergiorgio Francia ◽  
Leonardo Bocchi

Abstract Objective:Vascular ageing is associated with several alterations, including arterial stiffness and endothelial dysfunction. Such alterations represent an independent factor in the development of cardiovascular disease. In our previous works we demonstrated the alterations occurring in the vascular system are themselves reflected in the shape of the peripheral waveform; thus, a model that describes the waveform as a sum of Gaussian curves provides a set of parameters that successfully discriminate between under(<= 35 years old) and over subjects (> 35 years old). In the present work, we explored the feasibility of a new decomposition model, based on a sum of exponential pulses, applied to the same problem. Approach: The first processing step extracts each pulsation from the input signal and removes the long-term trend using a cubic spline with nodes between consecutive pulsations. After that, a Least Squares fitting algorithm determines the set of optimal model parameters that best approximates each single pulse. The vector of model parameters gives a compact representation of the pulse waveform that constitutes the basis for the classification step. Each subject is associated to his/her "representative" pulse waveform, obtained by averaging the vector parameters corresponding to all pulses. Finally, a Bayesan classifier has been designed to discriminate the waveforms of under and over subjects, using the leave-one-subject-out validation method. Main results: Results indicate that the fitting procedure reaches a rate of 96% in under subjects and 95% in over subjects and that the Bayesan classifier is able to correctly classify 91\% of the subjects with a specificity of 94% and a sensibility of 84%. Significance: This study shows a sensible vascular age estimation accuracy with a multi-exponential model, which may help to predict cardiovascular diseases.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Dewei Li ◽  
Yonghao Yin ◽  
Hong He

Train dwell time estimation is a critical issue in both scheduling and rescheduling phases. In a previous paper, the authors proposed a novel dwell time estimation model at short stops which did not require the passenger data. This model shows promising results when applied to Dutch railway stations. This paper focuses on testing and improving the generality of the model by two steps: first, the model is tested by applying more independent datasets from another city and comparing the estimation accuracy with the previous Dutch case; second, the model’s generality is tested by a theoretical approach through the analysis of individual model parameters, variables, model scenarios, and model structure as well as work conditions. The validation results during peak hours show that the MAPE of the model is 11.4%, which is slightly better than the results for the Dutch railway stations. A more generalized predictor called “dwell time at the associated station” is used to replace the square root term in the original model. The improved model can estimate train dwell time in all the investigated stations during both peak and off-peak periods. We conclude that the proposed train dwell time estimation model is generic in the given condition.


Author(s):  
Yasutaka Umayahara ◽  
Zu Soh ◽  
Kiyokazu Sekikawa ◽  
Toshihiro Kawae ◽  
Akira Otsuka ◽  
...  

Cough peak flow (CPF) is a measurement to evaluate the risk of cough dysfunction and can be measured using various devices, such as spirometers. However, complex device setup and the face mask required to be firmly attached to the mouth impose burdens on both patients and their caregivers. Therefore, this study develops a novel cough strength evaluation method using cough sounds. This paper presents an exponential model to estimate CPF from the cough peak sound pressure level (CPSL). We investigated the relationship between cough sounds and cough flows and the effects of a measurement condition of cough sound, microphone type, and participant&rsquo;s height and gender on CPF estimation accuracy. The results confirmed that the proposed model estimated CPF with a high accuracy. The absolute error between CPFs and estimated CPFs were significantly lower when the microphone distance from the participant&rsquo;s mouth was within 30 cm than when the distance exceeded 30 cm. Analysis of the model parameters showed that the estimation accuracy was not affected by participant&rsquo;s height or gender. These results indicate that the proposed model has the potential to improve the feasibility of measuring and assessing CPF.


2018 ◽  
Vol 43 (2) ◽  
pp. 143-158 ◽  
Author(s):  
Peida Zhan ◽  
Hong Jiao ◽  
Manqian Liao ◽  
Yufang Bian

The within-item characteristic dependency (WICD) means that dependencies exist among different types of item characteristics/parameters within an item. The potential WICD has been ignored by current modeling approaches and estimation algorithms for the deterministic inputs noisy “and” gate (DINA) model. To explicitly model WICD, this study proposed a modified Bayesian DINA modeling approach where a bivariate normal distribution was employed as a joint prior distribution for correlated item parameters. Simulation results indicated that the model parameters were well recovered and that explicitly modeling WICD improved model parameter estimation accuracy, precision, and efficiency. In addition, when potential item blocks existed, the proposed modeling approach still demonstrated good performance and high robustness. Furthermore, the fraction subtraction data were analyzed to illustrate the application and advantage of the proposed modeling approach.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2381 ◽  
Author(s):  
Yasutaka Umayahara ◽  
Zu Soh ◽  
Kiyokazu Sekikawa ◽  
Toshihiro Kawae ◽  
Akira Otsuka ◽  
...  

Cough peak flow (CPF) is a measurement for evaluating the risk of cough dysfunction and can be measured using various devices, such as spirometers. However, complex device setup and the face mask required to be firmly attached to the mouth impose burdens on both patients and their caregivers. Therefore, this study develops a novel cough strength evaluation method using cough sounds. This paper presents an exponential model to estimate CPF from the cough peak sound pressure level (CPSL). We investigated the relationship between cough sounds and cough flows and the effects of a measurement condition of cough sound, microphone type and participant’s height and gender on CPF estimation accuracy. The results confirmed that the proposed model estimated CPF with a high accuracy. The absolute error between CPFs and estimated CPFs were significantly lower when the microphone distance from the participant’s mouth was within 30 cm than when the distance exceeded 30 cm. Analysis of the model parameters showed that the estimation accuracy was not affected by participant’s height or gender. These results indicate that the proposed model has the potential to improve the feasibility of measuring and assessing CPF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Miyamoto ◽  
Zu Soh ◽  
Shigeyuki Okahara ◽  
Akira Furui ◽  
Taiichi Takasaki ◽  
...  

AbstractThe need for the estimation of the number of microbubbles (MBs) in cardiopulmonary bypass surgery has been recognized among surgeons to avoid postoperative neurological complications. MBs that exceed the diameter of human capillaries may cause endothelial disruption as well as microvascular obstructions that block posterior capillary blood flow. In this paper, we analyzed the relationship between the number of microbubbles generated and four circulation factors, i.e., intraoperative suction flow rate, venous reservoir level, continuous blood viscosity and perfusion flow rate in cardiopulmonary bypass, and proposed a neural-networked model to estimate the number of microbubbles with the factors. Model parameters were determined in a machine-learning manner using experimental data with bovine blood as the perfusate. The estimation accuracy of the model, assessed by tenfold cross-validation, demonstrated that the number of MBs can be estimated with a determinant coefficient R2 = 0.9328 (p < 0.001). A significant increase in the residual error was found when each of four factors was excluded from the contributory variables. The study demonstrated the importance of four circulation factors in the prediction of the number of MBs and its capacity to eliminate potential postsurgical complication risks.


2021 ◽  
Author(s):  
Rahul Manoj ◽  
V Raj Kiran ◽  
P M Nabeel ◽  
Mohanasankar Sivaprakasam ◽  
Jayaraj Joseph

Author(s):  
Елизавета Александровна Молчанова ◽  
Петр Вячеславович Лужнов

В работе приведены понятия жесткости, эластичности и тонуса сосудов, а также же их взаимосвязь с общим состоянием сосудистой стенки. Описан индекс, объединяющий влияние вышеперечисленных факторов на состояние сосудистой системы и дающий представление о возрасте сосудов пациента, а также показана связь этого индекса с возрастом человека. Представлен обзор способов определения возраста сосудов с помощью контурного анализа пульсовой волны. Среди предложенных способов был выделен подход на основе контурного анализа сигнала пульсовой волны, а также ее второй производной. В данном исследовании проводилась разработка алгоритма расчета показателя возраста сосудов (VA), базирующаяся на анализе сигнала и его второй производной. При этом особое внимание уделялось физической интерпретации параметров, входящих в состав расчетной формулы. С помощью представленного алгоритма в группе из трех испытуемых был определен сосудистый возраст. Из анализа полученных результатов было выявлено влияние физиологических факторов на значение возраста сосудов. Предложены методики, позволяющие исключить влияние этих факторов на значения показателя VA и тем самым получить более точные результаты. Также представлены стратегии дальнейшего развития исследований в этом направлении In The paper presents the concepts of rigidity, elasticity and tone of blood vessels, as well as their relationship with the general state of the vascular wall. An index is described that combines the influence of the above factors on the state of the vascular system and gives an idea of the age of the patient's vessels, and also shows the relationship of this index with the age of a person. An overview of the methods for determining the age of blood vessels using the contour analysis of the pulse wave is presented. Among the proposed methods, an approach based on the contour analysis of the pulse wave signal, as well as its second derivative, was singled out. In this study, an algorithm was developed for calculating the indicator of vascular age (VA), based on the analysis of the signal and its second derivative. In this case, special attention was paid to the physical interpretation of the parameters included in the calculation formula. Using the presented algorithm, vascular age was determined in a group of three subjects. From the analysis of the results obtained, the influence of physiological factors on the value of the age of the vessels was revealed. Methods are proposed that allow to exclude the influence of these factors on the values of the VA indicator and thereby obtain more accurate results. Also presented are strategies for the further development of research in this direction


2018 ◽  
Vol 22 (8) ◽  
pp. 4565-4581 ◽  
Author(s):  
Florian U. Jehn ◽  
Lutz Breuer ◽  
Tobias Houska ◽  
Konrad Bestian ◽  
Philipp Kraft

Abstract. The ambiguous representation of hydrological processes has led to the formulation of the multiple hypotheses approach in hydrological modeling, which requires new ways of model construction. However, most recent studies focus only on the comparison of predefined model structures or building a model step by step. This study tackles the problem the other way around: we start with one complex model structure, which includes all processes deemed to be important for the catchment. Next, we create 13 additional simplified models, where some of the processes from the starting structure are disabled. The performance of those models is evaluated using three objective functions (logarithmic Nash–Sutcliffe; percentage bias, PBIAS; and the ratio between the root mean square error and the standard deviation of the measured data). Through this incremental breakdown, we identify the most important processes and detect the restraining ones. This procedure allows constructing a more streamlined, subsequent 15th model with improved model performance, less uncertainty and higher model efficiency. We benchmark the original Model 1 and the final Model 15 with HBV Light. The final model is not able to outperform HBV Light, but we find that the incremental model breakdown leads to a structure with good model performance, fewer but more relevant processes and fewer model parameters.


1995 ◽  
Vol 79 (3) ◽  
pp. 1008-1026 ◽  
Author(s):  
D. R. Fine ◽  
D. Glasser ◽  
D. Hildebrandt ◽  
J. Esser ◽  
R. E. Lurie ◽  
...  

Hepatic function can be characterized by the activity/time curves obtained by imaging the aorta, spleen, and liver. Nonparametric deconvolution of the activity/time curves is clinically useful as a diagnostic tool in determining organ transit times and flow fractions. The use of this technique is limited, however, because of numerical and noise problems in performing deconvolution. Furthermore, the interaction of part of the tracer with the spleen and gastrointestinal tract, before it enters the liver, further obscures physiological information in the deconvolved liver curve. In this paper, a mathematical relationship is derived relating the liver activity/time curve to portal and hepatic behavior. The mathematical relationship is derived by using transit time spectrum/residence time density theory. Based on this theory, it is shown that the deconvolution of liver activity/time curves gives rise to a complex combination of splenic, gastrointestinal, and liver dependencies. An anatomically and physiologically plausible parametric model of the hepatic vascular system has been developed. This model is used in conjunction with experimental data to estimate portal, splenic, and hepatic physiological blood flow parameters for eight normal volunteers. These calculated parameters, which include the portal flow fraction, the splenic blood flow fraction, and blood transit times are shown to adequately correspond to published values. In particular, the model of the hepatic vascular system identifies the portal flow fraction as 0.752 +/- 0.022, the splenic blood flow fraction as 0.180 +/- 0.023, and the liver mean transit time as 13.4 +/- 1.71 s. The model has also been applied to two portal hypertensive patients. The variation in some of the model parameters is beyond normal limits and is consistent with the observed pathology.


Sign in / Sign up

Export Citation Format

Share Document