Axial squeeze strengthen effect on rotary magneto-rheological damper

2017 ◽  
Vol 26 (5) ◽  
pp. 055022
Author(s):  
Xiaomin Dong ◽  
Chi Duan ◽  
Jianqiang Yu
2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


2003 ◽  
Author(s):  
Andrea C. Wray ◽  
Francis B. Hoogterp ◽  
Scott Garabedian ◽  
Eric Anderfaas ◽  
Brian Hopkins

Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ping Li ◽  
Yuan Zhang ◽  
Yingfeng Zuo ◽  
Yiqiang Wu ◽  
Guangming Yuan ◽  
...  

AbstractInorganic impregnation strengthening of Chinese fir wood was carried out to improve the strength, dimensional stability, flame retardancy, and smoke suppression of Chinese fir wood. Sodium silicate was used as reinforcement, a sulfate and phosphate mixtures were used as a curing agent, and Chinese fir wood was reinforced by the respiratory impregnation method (RIM) that imitating human respiration and vacuum progressive impregnation method (VPIM). The weight percentage gain (WPG), density increase rate, distribution of modifier, bending strength (BS), compressive strength (CS), hardness, and water resistance of unreinforced Chinese fir wood from the VPIM and RIM were compared. It was found that RIM could effectively open the aspirated pits in Chinese fir wood, so its impregnation effect, strengthen effect and dimension stabilization effects were the best. RIM-reinforced Chinese fir wood was filled with silicate both horizontally and vertically. At the same time, the transverse permeability of silicate through aspirated pits was significantly improved. The chemical structure, crystalline structure, flame retardancy, smoke suppression, and thermal stability of VPIM- and RIM-reinforced Chinese fir wood were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cone calorimeter (CONE), and thermogravimetric analysis (TGA). The results indicated that although the crystallinity of RIM-reinforced Chinese fir wood decreased the most, more chemical crosslinking and hydrogen bonding were formed in the wood, and the strengthen effect was still the best. Compared with VPIM-reinforced Chinese fir wood, RIM-reinforced Chinese fir wood had lower heat release rate (HRR), peak-HRR, mean-HRR, total heat release (THR), smoke production rate (SPR), and total smoke production (TSP), higher thermal decomposition temperature and residual rate. It was indicated that RIM-reinforced Chinese fir wood was a better flame retardant, and has a smoke suppression effect, thermal stability, and safety performance in the case of fire.


Sign in / Sign up

Export Citation Format

Share Document